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A B S T R A C T   

The γ-aminobutyric acid (GABA), is a non-proteinogenic, four carbon amino acid having multifaceted roles in 
both plants and animals. It plays an important role in plant growth and abiotic stress mitigation in plants. It also 
plays a prominent role in leaf senescence that forms the concluding stage of plant growth and development. Thus, 
consolidating the advancements in studies pertaining to multifaceted roles of GABA in coordinating plants’ 
growth, development, and senescence to enhance performance in both optimal and stressful conditions is utmost 
crucial. The present review aims to discuss the significance of GABA molecule in plant growth, development and 
senescence alongwith the potential role of GABA under abiotic stresses.   

1. Introduction 

Gamma-aminobutyric acid (GABA) is a non-proteinogenic amino 
acid that act as a signalling molecule with multifaceted roles in living 
organisms including both animals and plants (Michaeli and Fromm, 
2015; Kamal et al., 2016; Li et al., 2020). GABA mediates various 
physiological and molecular processes in plants such as regulation of 
redox status (Jin et al., 2019), regulation of cytosolic pH (Ramesh et al., 
2017; Su et al., 2019), osmotic potential (Vijayakumari and Puthur, 
2016), modulation of nitrate uptake and its utilization (Zhen et al., 
2018), carbon (C) and nitrogen (N) metabolic flux (Fait et al., 2008, 
2011; Michaeli and Fromm, 2015; Chen et al., 2020), pollen tube growth 
during plant reproduction (Priya et al., 2019), cell wall modification 
(Renault et al., 2011; Renault et al., 2013), adventitious root develop-
ment (Xie et al., 2020) and plastid associated functions (Xiang et al., 
2016; Bashir et al., 2021). 

In plants, GABA biosynthesis and metabolism together constitute 
GABA shunt and mediate plant growth and development (Das et al., 

2016; Ji et al., 2020). GABA shunt consists of cytosolic enzyme gluta-
mate decarboxylase (GAD; EC 4.1.l.15), that catalyses the conversion of 
glutamate into GABA and two mitochondrial enzymes, GABA-T (EC 
2.6.1.19) and succinic semialdehyde dehydrogenase (SSADH; EC 
1.2.1.16) that participate in GABA metabolism into succinic semi-
aldehyde (SSA) and further into succinate. GABA shunt components 
have a crucial role in maintaining ion homeostasis (Su et al., 2019), 
abiotic stress tolerance (Al-Quraan and Al-Share, 2016; Jalil et al., 2017; 
Sita and Kumar, 2020) and ultimately regulates plant growth, devel-
opment (Jalil et al., 2017) and plant senescence (Jalil et al., 2019). 
GABA significantly improves plant morphological and physiological 
traits during abiotic stress conditions (Li et al., 2016a; Ma et al., 2019) in 
terms of photosynthetic efficiency, accumulation of osmoprotectants 
such as proline (Li et al., 2016b; Wang et al., 2017) and polyamine 
metabolism (Seifikalhor et al., 2020). GABA alleviates abiotic stress 
induced reactive oxygen species (ROS) accumulation by activating 
antioxidant defence machinery (Chen et al., 2018; Kumar et al., 2019a). 
GABA enhance stress tolerance in plants by modulating the expression of 
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genes involved in signal transduction, ROS production and related stress 
responsive processes (Podlešáková et al., 2019). Therefore, GABA- 
mediated plant responses might assist in formulation of strategies to 
enhance growth and development in plants optimal and stressful envi-
ronments and ultimately improving plant productivity. 

2. GABA: biosynthesis and signalling in plants 

Identification of the biosynthetic pathway of any metabolite and 
characterising the key regulatory enzymes of that pathway is crucial to 
determine the metabolite’s functional dynamics. GABA biosynthesis and 
metabolism takes place through a chain of reactions that occur in a 
sequential manner and are collectively regarded as GABA shunt (Fig. 1; 
Table 1). GABA is primarily biosynthesised from glutamate in a decar-
boxylation reaction catalysed by GAD. GAD catalyses the irreversible 
conversion of glutamate into GABA which involves the addition of a 
proton and releases CO2 in the cytosol (Baum et al., 1993; Michaeli and 
Fromm, 2015). GABA then gets transported to mitochondria where its 
subsequent catabolism into succinate occurs by two consecutive re-
actions catalysed by GABA- T and SSADH.  

In plants, the GAD gene was isolated from a common petunia along 
with its Ca2+/CaM binding domain (CaMBD) (Baum et al., 1993) later, 
followed by identification and isolation of several other GAD homo-
logues in different plant species (Ling et al., 1994; Snedden et al., 1995). 
CaMBD mediated conversion of glutamate into GABA (Baum et al., 
1996) indicated the possible role of intracellular Ca2+ signalling in 
GABA biosynthesis. The role of CaM binding domain of GAD in normal 
GAD activity, glutamate metabolism, GABA biosynthesis, and normal 
plant growth and development was inferred in vivo analysis of 

transgenic tobacco plants having mutant GAD where absence of CaM 
binding domain led to several growth abnormalities such as short stems 
due to inhibition of cell elongation in the cortex, abnormal GAD com-
plexes, extreme high levels of GABA and low glutamate levels (Baum 
et al., 1996). However, first plant GAD isoform i.e., OsGAD2 that lacks 
authentic CaM binding ability due to absence of CaMBD at C-terminus 
was isolated from rice roots where it lacked the ability to bind to bovine 
CaM in the presence of Ca2+ while OsGAD1 specifically functions in 
Ca2+/ CaM dependent manner by binding to the bovine CaM (Akama 
et al., 2001). 

After biosynthesis of GABA in cytosol, it is transported to the mito-
chondria via GABA carriers and later active GABA metabolism occurs 
within mitochondria that marks the second step of GABA shunt. The 
translocation of GABA across the plasma membrane is catalysed by a 
mitochondrial enzyme i.e. GABA permease (GABA-P) that belongs to 
APC transporter family (Michaeli et al., 2011). Within the mitochondrial 
matrix GABA catabolism occurs by GABA-T that catalyses the produc-
tion of SSA with simultaneous activation of different amino acid ac-
ceptors such as pyruvate, α-ketoglutarate (AKG) or glyoxylate (Clark 
et al., 2009a; Shelp et al., 2012a; Michaeli and Fromm, 2015). Lastly, 
SSA gets converted into succinate by another mitochondrial enzyme, 
SSADH. Succinate formed via GABA shunt plays an important role in the 
TCA cycle and mitochondrial electron transport chain by acting as an 
electron donor (Barbosa et al., 2010). Biochemical analysis of SSADH, 
revealed a possible role of CaM mediated calcium signalling in regula-
tion of GABA shunt (Busch and Fromm, 1999). The conversion reaction 
of SSA to succinate is an oxidation reaction that is NAD-dependent and is 
catalysed by the help of SSADH enzyme that is active as homo 
tetrameter. 

Fig. 1. GABA biosynthesis can possibly occur via three pathways, 
A) By polyamine degradation: Polyamines such as put and spd provide an alternate route for GABA biosynthesis. Put is either synthesised directly from ornithine or 
indirectly from arginine under the enzymatic activity of ODC or ADC respectively. Furthermore, Put undergoes reaction with aminopropyl group derived from dcSAM 
in the presence of enzyme spd synthase to form another polyamine, spd. Both put and spd are further catabolised to Δ1 pyrroline via the action of DAO and PAO 
respectively. PDH, then converts Δ1 pyrroline into GABA. 
B) Via GABA shunt: The biosynthesis of GABA from glutamate via GABA shunt pathway, in an irreversible decarboxylation reaction in cytosol of the plant cell. GABA 
synthesised from glutamate then gets transferred from the cytosol to mitochondria and gets converted into SSA via GABA-T using either AKG (by GABA-TK) or 
pyruvate (by GABA-TP) as amino acid acceptors. SSA later gets reduced to succinate via SSADH that acts both as an electron donor to the mitochondrial ETC and as a 
component of the TCA cycle. 
C) By proline: Another alternative route for GABA biosynthesis is via non-enzymatic reactions of proline that is prevalent mainly under oxidative stress conditions 
due to excessive accumulation of ROS where H abstraction from Pyr leads to the formation of Δ1 pyrroline which further contributes in GABA biosynthesis. 
ADC: Arg decarboxylase, DAO: diamine oxidases, dcSAM: decarboxylated S-adenosyl-Met, ODC: Orn decarboxylase, GAD: Glutamate decarboxylase, GDH: glutamate 
dehydrogenase, GABA-T: Gamma-aminobutyric acid Transaminase, GABA: gamma-Aminobutyric acid, PAO: polyamine oxidases, PDH: Δ1-pyrroline dehydrogenase, 
Put: Putrescine; Pyr.: pyrroline, Spd: spermidine, Spd synthase: spermidine synthase, SSADH: Succinic semialdehyde dehydrogenase. 
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Alternate conversion of SSA into γ-hydroxybutyrate (GHB) catalysed 
by GHB dehydrogenase (GHBDH) has been reported in animals 
(Andriamampandry et al., 1998), plants (Breitkreuz et al., 2003) and 
recently in E. coli (Saito et al., 2009). In plant tissues, there are cir-
cumstantial reports on alternate catabolism of SSA into GHB in response 
to unfavourable environment such as oxygen deficient conditions (Allan 
et al., 2003), high light conditions (Fait et al., 2005) and water as well as 
heat stress (Allan et al., 2008) have been illustrated. The conversion of 
SSA into GHB is a reduction process that is prevalent during abiotic 

stress conditions indicating the role of GHBDH in abiotic stress tolerance 
in plants and is putatively regulated by redox status of the cell and 
NADPH-dependent glyoxylate reductases (Breitkreuz et al., 2003; Allan 
et al., 2008). 

Alternatively, GABA biosynthesis can possibly occur via degradation 
of polyamines such as putrescine (Put) and spermidine (Spd; Bhatnagar 
et al., 2002; Shelp et al., 2012b; Fig. 1.A). Put is either produced directly 
via decarboxylation of non-proteinogenic amino acid, ornithine by the 
activity of ornithine decarboxylase (EC 4.1.1.17) or indirectly via 

Table 1 
Involvement of GABA shunt components in scavenging mechanism of ROS for improving tolerance to abiotic stresses  

GABA shunt 
components 

Gene name Plants Responses Components determining oxidative stress References 

Glutamate 
decarboxylase 
(GAD) 

PgGAD Panax ginseng Enhanced expression during various abiotic 
stresses like temperature stress, osmotic 
stress, anoxia, oxidative stress, and 
mechanical damage 

H2O2 activity was regulated by expression 
levels of GAD gene 

Lee et al., 2010 

Triticum 
aestivum 

Protection against salt and osmotic stress MDA accumulation and seed germination 
sensitivity 

Al-Quraan 
et al., 2013 

GABA transaminase 
(GABA-T) 

γ-vinyl-γ-aminobutyrate 
(GABA-T inhibitor), 
ssadh-2 

Arabidopsis 
thaliana 

Maintains redox equilibrium in ssadh 
mutants, inhibits cell death 

Altered ROI and GHB levels Fait et al., 
2005 

γ-Aminobutyric acid 
(GABA)  

Hordeum 
vulgare 

Alleviates 
oxidative damage caused by aluminium 
(Al3+) 
and proton stresses (H+) 

Higher levels of 
SOD, CAT and POD and reduced levels of f 
MDA, H2O2 and O2

⋅−

Song et al., 
2010  

Lactuca sativa Enhances salt tolerance and photosynthetic 
performance 

Reduced proline content and increased CAT, 
APX and SOD activity 

Kalhor et al., 
2018  

Trifolium 
repens 

Increased endogenous GABA concentration 
alleviates the oxidative stress and improves 
drought tolerance 

Pro accumulation and homeostasis Yong et al., 
2017  

Agrostis 
stolonifera 

Exogenous application of GABA (0.5mM) 
significantly reduces ROS production and 
enhances antioxidant enzyme activity that 
improves heat stress tolerance 

O2
⋅− , H2O2, MDA levels reduces with enhanced 

SOD, POD, APX, Dehydroascorbate reductase 
(DHAR), ascorbic acid (AsA) and 
dehydroascorbic acid (DHA) 

Li et al., 2016c  

Lycopersicon 
Esculentum 

Decreases chilling stress along with the 
reduction in H2O2 amount. 

Reduced MDA and proline levels along with 
enhanced activity of CAT and SOD 

Malekzadeh 
et al., 2014  

Oryza sativa Partial protection from heat stress injury Activities of antioxidant enzymes including 
CAT, SOD, APX, glutathione reductase (GR) 
and nonenzymatic antioxidants like ascorbate 
and glutathione 

Nayyar et al., 
2014  

Lolium 
perenne 

Mitigates damages caused by drought stress 
by altering relative water content, turf 
quality, oxidative stress and lowering 
wilting. 

Enhanced SOD, CAT, APX, and POD 
(peroxidase) activity 

Krishnan et al., 
2013  

Triticum 
aestivum 

Alleviate oxidative damage caused by 
chilling stress in wheat seedlings by 
activating antioxidant defence responses 

Reduced MDA levels and enhanced activities 
of antioxidant defence enzymes including 
CAT, APX and SOD. 

Malekzadeh 
et al., 2012  

Caragana 
intermedia 

Inhibits H2O2 accumulation brought about 
by NaCl Stress 

expression of genes involved in PA synthesis 
that acts as radical scavengers 

Shi et al., 2010 

Hydroxybutyrate 
Dehydrogenase 

GHBDH Arabidopsis 
thaliana 

Induces oxidative stress tolerance Redox balance regulated by activity of 
GHBDH and GHB 

Breitkreuz 
et al., 2003  

Table 2 
Involvement of GABA Shunt components in plant growth, development and senescence.  

GABA Shunt 
components 

Gene Plants Responses References 

Glutamate 
dehydrogenase 

GDHI Arabidopsis thaliana Increases nitrogen assimilation Oliveira et al., 
1996  

GDH Nicotiana tabacum Involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress 
hormones (ethylene, jasmonic acid and salicylic acid) and reactive oxygen species 

Pageau et al., 
2005 

Glutamine 
synthetase 

GS1 Nicotiana tabacum Involved in nitrogen mobilization, are differentially regulated with the supplementation of hormones 
(ethylene, salicylic acid and jasmonic acid) during pathogen attack 

Pageau et al., 
2005 

GS-1, 
GS-2 

Lycopersicon 
esculentum 

Remobilization of leaf nitrogen during water stress to developing organs Bauer et al., 
1997 

GS1 and 
GSr 

Triticum aestivum Roles in assimilating ammonia during the critical phases of remobilization of nitrogen to the grain 
during grain development and filling and during senescence 

Bernard et al., 
2008 

GS1 Nicotiana 
plumbaginifolia 

Role in regulating proline production consistent with the function of proline as a nitrogen source and 
as a key metabolite synthesised in response to water stress. 

Brugiere et al., 
1999 

GS-1, 
GS-2 

Oryza sativa Remobilization of Leaf Nitrogen during Natural Senescence Kamachi et al., 
1991  
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essential amino acid, arginine in the presence of arginine decarboxylase 
(EC 4.1.1.9). However, spd is synthesised from reaction of put with 
decarboxylated S-adenosyl-Met in the presence of enzyme spd synthase 
(EC2.5.1.16). Later, put and spd catabolise into Δ1-pyrroline via activity 
of diamine oxidases (E.C.1.4.3.6) and polyamine oxidases (E.C. 1.5.3.3; 
Mattoo et al., 2010). Δ1-pyrroline is then committed to synthesize GABA 
by the activity of pyrroline dehydrogenase. Alternatively, GABA 
biosynthesis can probably occur by a non-enzymatic reaction of proline 
under oxidative stress (Signorelli et al., 2015; Michaeli and Fromm, 
2015; Fig. 1). Under stress conditions, proline levels within the cell 
tremendously increases along with the increased concentration of ROS. 
OH• radical abstracts hydrogen from proline which further de-
carboxylates to form pyrolline. Another hydrogen abstraction from 
pyrolline leads to the formation Δ1-pyrroline that is the substrate for 
enzyme pyrroline dehydrogenase to form GABA. 

Modulation in activity of GABA shunt and its associated components 
can possibly affect plant resilience during unfavourable conditions and 
alter plant developmental processes (See Table 2). For instance, in 
pop2–1 mutants (GABA-T mutants, the mutation affects the first step of 
GABA catabolism), GABA accumulation negatively influences plant 
growth and development by causing cell elongation defects (Renault 
et al., 2011). The mutation in one of the important enzyme GABA- 
Transaminase (GABA-T) involved in GABA shunt induces early leaf 
senescence in Arabidopsis under the influence of various abiotic stresses 
such as pH, water, light, and cold stress (Jalil et al., 2017). It has been 
reported that three GABA-T genes isolated from Solanum lycopersicum L. 
(tomato; Akihiro et al., 2008; Clark et al., 2009b; Koike et al., 2013) 
have distinct subcellular localisation and are characterised as pyruvate- 
dependent GABA transaminases (GABA-TPs; Clark et al., 2009b). Koike 
et al. (2013) suggested that the loss-of-function analysis of SlGABA-T 
isoforms using the RNAi lines with suppressed pyruvate and glyoxylate 
dependent GABA-T gene expression in tomato revealed that GABA-T1 
contributes to GABA reduction in the ripening tomato fruits (Koike 
et al., 2013). GABA content, in SlGABA-T1RNAi lines, was higher than in 
the wild-type. Transgenic plants showed alteration in vegetative growth 
with severe dwarfism and infertility (Koike et al., 2013). These results 
demonstrated that impaired functioning of GABA-T1 could lead to a 

peculiar GABA accumulation in the cell’s cytosol and abnormal plant 
development suggesting that GABA may be an important player influ-
encing plants developmental processes. 

2.1. GABA signalling in plants 

Despite the clearest evidences on functions of GABA in regulation of 
various physiological and metabolic processes in plants, insights to 
GABA signal transduction have remained vague for a long time and has 
still not been clearly deciphered. Though, GABA signalling in plants is 
mediated via aluminium-activated malate transporter (ALMT: Fig. 2), a 
multigenic anion channel uniquely found in plants (Ramesh et al., 
2015). ALMT belongs to a family of anion transporters with several 
members that show different expressions through various plant tissues 
and are localised in plasma membrane of the cell (Kollmeier et al., 2001; 
Pineros and Kochian, 2001). ALMT proteins were genetically identified 
in wheat (TaALMT1; Sasaki et al., 2004) and Arabidopsis (AtALMT1) 
(Hoekenga et al., 2006); and their putative role in regulation of GABA 
signal transduction was established in wheat roots by Ramesh et al. 
(2015) that provided the insights to GABA signalling. Here, exposure of 
wheat roots to pH and Al3+ stress revealed that GABA negatively regu-
lates the ALMT activity that further effects plant growth processes 
including the regulation of pollen tube and root growth. There is an 
unusual but an interesting interplay between acidosis, Al3+ and GABA as 
acidosis is one among the abiotic stresses that lead to GABA accumu-
lation (Crawford et al., 1994) and Al3+ stress co-occurs significantly 
with acidosis (Sasaki et al., 2004). ALMT channels shows electrogenic 
activity and have the ability to change electric potential of plasma 
membrane and tonoplast. GABA negatively regulates anion efflux from 
ALMT channels for transducing various signals. However, the anion 
equilibrium potential in plants is highly positive due to which the GABA 
mediated anion flux results in shift in electric potential of the cell by 
depolarisation (Ramesh et al., 2015). The proteins that aid in GABA 
signal transduction in plants are not orthologues to that of animals 
except a small region of similarity with GABAA receptor found in 
mammalian cells (Bergmann et al., 2013). However, no definite re-
ceptors involved in GABA signalling within the plants have been 

Fig. 2. GABA signalling in plants: 
GABA is synthesised via GABA shunt pathway, in turn 
modulates the activity of ALMT membrane channels. 
GABA-stimulates anion efflux (yellow arrows) and 
GABA-inhibits anion influx (red T-bars) in the tono-
plast of plant cells. External stimuli such as abiotic 
stress stimulate Ca2+ influx and activate the Ca2+

CaM domain of GAD resulting in the increased syn-
thesis of GABA and modulates the activity of ALMT 
membrane channels. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the web version of this article.) 
ALMT: Aluminium-activated malate transporter, 
GABA: γ-aminobutyric acid, GAD; glutamate decar-
boxylase, GABA-T: γ-aminobutyric acid- trans-
aminase, SSA: succinyl semialdehyde; CaM: 
calmodulin, TCA cycle: tricarboxylic acid cycle.   
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characterised yet but it has been found that the activity of ion channels 
in plants is regulated by plant derived drugs such as muscimol (agonist) 
and bicuculine (antagonist) that also effects GABAA receptors in animals 
(Ramesh et al., 2015). It is still unclear whether these molecules of plant 
origin show interactions with GABA binding regions of ALMT to mediate 
GABA signalling in plants. Their interaction with GABA binding sites 
could further provide a clear insight to various speculations made on 
GABA receptors. Ca2+ plays an important role as ubiquitous secondary 
messenger in several plant signal transduction processes during various 
abiotic stresses (Tuteja and Mahajan, 2007). The involvement of Ca2+ in 
GABA signal transduction has also been reported (Ma et al., 2019). 
During salinity stress (NaCl), GABA significantly resulted in accumula-
tion of phenolics in barley with an indicative involvement of Ca2+ in 
GABA- promoted synthesis of phenolics (Ma et al., 2019). GABA sup-
plementation triggered increase in CaM, enhanced activity of Ca2+

-ATPase at an early gemination stage along with upregulation of calcium 
binding proteins such as calcium-dependent protein kinase (CDPK), CaM 
dependent protein kinase (CaMK), and Ca2+/CaM dependent protein 
kinase (CCaMK) in barley. GABA induced Ca2+ influx in root tips under 
salinity, alterations in distribution of Ca2+ precipitates and putative role 
of Ca2+ in increasing phenolic accumulation indicates importance of 
Ca2+ in GABA signal transduction against NaCl stress. Identification of 
suitable GABA receptors, and receptor binding signalling molecules 
involved in generation of response against several stress conditions can 
decipher exact mechanism of GABA signalling directly or indirectly 
involved in stress tolerance. Furthermore, deciphering stress responsive 
genes induced during GABA signalling, and analysing their expression 
control network can enhance our understanding about GABA mediated 
signalling during stress responses. 

3. Role of GABA in plant growth and development: an overview 

Frequent reiteration of signalling roles of GABA has continuously 
been linked with plant growth and development. GABA plays a crucial 
role in mediating plant growth and development (Jalil et al., 2019; Du 
et al., 2020). Exogenous application of GABA (0, 0.01, 0.1, 1, or 10 mM), 
overexpression of GAD2 and exogenous application of GABA-T inhibitor 
(i.e., vigabatrin; 0, 10, 50, or 100 μM) in poplar resulted in endogenous 
GABA accumulation that negatively regulated adventitious root (AR) 
growth and inhibited or delayed AR formation (Xie et al., 2020). 
Elevation in endogenous GABA levels also altered metabolic fluxes such 
as C: N pools by inhibiting sugar translocation, increasing levels of 
amino acid modulating hormone homeostasis (increased IAA levels and 
decreased ethylene levels) and transcriptional modification in hormonal 
signalling pathways that ultimately affected AR formation in poplar (Xie 
et al., 2020). Hence, it can be interpreted that GABA mediated AR 
growth inhibition is the result of multidimensional interaction between 
GABA, metabolic pathways, hormonal homeostasis and signalling 
responses. 

Hyperaccumulation of GABA within the plant cell can misbalance 
the intracellular amino acid contents resulting in aberrant phenotypes. 
One such interpretation was obtained from investigations on transgenic 
lines of rice and tobacco overexpressing rice GAD2 (Akama and 
Takaiwa, 2007). It was also shown that the exemplary features of 
petunia GAD are conserved in all GAD isoforms (except GAD2) of rice. 
Transgenic lines, GAD2ΔC of rice and tobacco overexpressing truncated 
C-terminal GAD2 exhibited GABA accumulation due to increased GAD 
activity. In transgenic plants, the levels of other free amino acids 
simultaneously decreased after the elevation in GABA levels. Further-
more, GAD2ΔC lines also exhibited altered phenotypes including small, 
etiolated and curled leaves, and infertility as in rice and dwarfism with 
reduced parenchymatous cell size in stem cortex of tobacco (Akama and 
Takaiwa, 2007). In Brassica napus L. (Rapeseed) signals from GABA 
molecule upregulated nitrate uptake (Beuve et al., 2004). In Arabi-
dopsis, GABA mediates growth of pollen tube and its guidance for tar-
geted entry into the ovary (Palanivelu et al., 2003). However, reduced 

expression of POP2 gene (encoding GABA-T enzyme) decreased GABA-T 
activity leading to higher GABA accumulation in ovule and aberrant 
growth patterns in pollen tube (Palanivelu et al., 2003). Hence, it is 
evident that GABA regulates plant growth related patterns. Studies 
related to GABA-mediated growth promotion in Lemna (duckweed) 
minor plants revealed a direct correlation between the concentration of 
GABA in the media and dry weight of duckweed where 10 mM GABA in 
the media resulted in a 3-fold increase in plant dry weight over control 
(Kinnersley and Lin, 2000). Statistically significant growth in duckweed 
was absent during treatment with 0.5 mM or lower levels of GABA and 
contradictorily, 2-aminobutyric acid and 3-aminobutyric acid despite 
being isomers of GABA had an inhibitory effect on the growth of plant 
and plant growth after treatment with 0.1 mM or higher levels (Kin-
nersley and Lin, 2000). Elevated GABA levels due to exogenous GABA 
treatments alters dry weight and plant mineral content and thus effects 
their growth and development. Remarkably, GABA regulated duckweed 
growth promotion was inhibited by bicuculline (a competitive antago-
nist) and picrotoxin (non-competitive antagonist) of GABA receptors 
from mammalian CNS. Exogenous application of GABA (0.5 mM) has 
shown to alleviate alkaline stress in Malus hupehensis (Chinese crab 
apple) seedlings with significant alterations in growth and develop-
mental processes such as increase in biomass, activation of antioxidant 
defence system to reduce ROS accumulation and enhancement in root 
growth (Li et al., 2020). Thus, GABA is a crucial in mediating several 
plant growth and developmental processes ultimately may affecting 
plant productivity. 

4. Significance of GABA in plants during senescence 

Plant senescence is a well-coordinated genetically programmed 
process in which degradation of functional proteins (Martinez et al., 
2008; Buet et al., 2019) and remobilization of nutrients takes place 
(Himelblau and Amasino, 2001; Maillard et al., 2015) to the young 
growing parts of the plant (Ansari et al., 2014). Senescence is marked by 
degradation and redistribution of nutrients, which are synthesised in 
leaves, from senescing parts to growing parts and reproductive organs 
resulting in seed and fruit development. In this context, the most 
important nutrient to be recycled and mobilized from senescing leaves 
to the young growing parts of the plant during senescence is N (Saka-
moto and Takami, 2014; Ansari et al., 2014). Senescence is regulated by 
various events and also involves signalling molecules such as GABA 
(Ansari et al., 2005, 2014). It is worth mentioning that, N metabolism 
involves GABA shunt as its key regulator that mediate its mobilization 
during leaf senescence which then subsequently enters into TCA cycle 
(Barbosa et al., 2010; Ansari et al., 2014). During leaf senescence, N 
present in macromolecules is converted into two amino acids namely 
glutamine and asparagine and transported through phloem to the 
growing parts such as seeds and fruits (Feller and Fischer, 1994). These 
amino acids are also converted into glutamate and α-keto acids with the 
help of transaminases (Ansari et al., 2014). A part of glutamate formed is 
also converted into GABA via GAD and enters into GABA shunt pathway. 
Metabolite-recycling routes (GABA-T and the TCA cycle), the conversion 
of glutamate to GABA profoundly affects the C–N balance of the seed 
(Fait et al., 2011) resulting in altered fatty acid metabolism and storage 
reserve accumulation. Further, metabolic profiling of glutamate in 
Arabidopsis established the role of GABA shunt as a nexus between C 
and N metabolism upon seed imbibition (Fait et al., 2011) before seed 
germination. 

4.1. GABA regulates oxidative stress during stress-induced senescence 

Detrimental stress conditions hamper growth, development and 
productivity of the plant by altering its physiological, biochemical and 
metabolic processes and by disturbing its osmotic and oxidative ho-
meostasis. Adverse environmental conditions cause disequilibrium in 
generation and scavenging of ROS simultaneously that leads to oxidative 
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stress induced damages in plants (Prasad et al., 1994; Choudhary et al., 
2020). Chloroplast is the major hotspot for generation of maximal ROS 
under severe environmental stress conditions (Partelli and Batista, 
2001). ROS in plants are also generated in cell wall (Pottosin et al., 
2014) mitochondria (Navrot et al., 2007), peroxisomes (Noctor et al., 
2002), endoplasmic reticulum (Mittler, 2002) and apoplast (Hu et al., 
2006). Enhanced leaf senescence is one of the major plant strategies to 
escape the drastic effects of oxidative stress caused by excessive ROS 
accumulation (Kumar et al., 2019b). GABA plays an important role in 
mediating oxidative stress induced leaf senescence. . Deregulated func-
tion of GABA shunt component can lead to ROS-induced cell death under 
heat and light under heat and light stress. Studies carried out on ssadh 
mutants of Arabidopsis showed that the impairment in the last step of 
GABA Shunt, elevated the levels of reactive oxygen intermediates 
(ROIs), exhibited phenotypic dwarfness, reduced leaf area, necrotic le-
sions, lower chlorophyll content, bleached leaves, and fewer flowers in 
contrast to WT plants and light and heat stress finally led to cell death 
(Bouche et al., 2003). Based on this study, Fait et al. (2005) observed 
that treatment of ssadh mutants with γ-vinyl-γ-aminobutyrate, a GABA-T 
inhibitor mitigated ROI and GHB accumulation, inhibited cell death, 
reduced phenotypic and biochemical defects (such as phenotypic 
dwarfness, reduced leaf area, necrotic lesions, lower chlorophyll content 
etc) caused due to deficiency of SSADH and ultimately enhanced plant 
growth. GABA shunt thus, mitigates oxidative stress by scavenging ROI 
accumulation. CaM has its role in tolerance against oxidative stress 
induced by UV treatments (UVA and UVB) and affects seed growth, its 
germination, ROS accumulation (Al-Quraan, 2015). In Arabidopsis, 
during seed germination when cam mutants with T-DNA insertions of 
CaM genes were given UVA and UVB treatment inducing oxidative 
stress, a rapid increase in GABA accumulation along with altered levels 
of GABA shunt metabolites (i.e. glutamate, alanine) were observed in 
coordination with the activation of antioxidant defence system to reduce 
ROS concentration within the cam mutants (Al-Quraan, 2015). In 
Capsicum annuum L. (pepper), GABA mitigated oxidative stress damages 
induced by low light conditions and enhanced stress tolerance via 
activation of antioxidant defence system and elevation in photochemical 
efficiency (Li et al., 2017). In this study, exogenous GABA supplemen-
tation (20 mM) in pepper reduced oxidative stress via reduction in MDA 
levels, enhancement in SOD, CAT activity. Exogenous GABA also 
enhanced endogenous GABA concentration and plant growth related 
parameters such as chlorophyll content, stomatal conductance, photo-
chemical quenching which increases photosynthesis, gaseous exchange, 
photochemical activity of PSII respectively (Li et al., 2017). In addition 
to this, endogenous GABA accumulation suggests the possible meta-
bolism of GABA into succinate which can later enter into TCA cycle and 
aid in regulating C:N balance in pepper. 

It is suggested that exogenous GABA induces tolerance against 
alkaline stress, regulates antioxidant system, modulates photosynthetic 
efficiency and elevates activity of TCA cycle enzymes (Li et al., 2020). 
The altered levels of TCA cycle enzymes on GABA application modulates 
C: N pool and establish strong links between GABA and plant senescence 
during abiotic stress conditions. In a recent study, tobacco leaves pro-
vided with NaCl treatment (500 mM) reportedly show delayed growth 
with significant alterations in levels of transamination metabolites such 
as GABA along with modulations in pathways such as TCA cycle, 
glycolysis, glutamate-mediated proline biosynthesis (Zhang et al., 
2011).The antioxidant defence is an elementary detoxification system of 
plants to counteract the stress induced oxidative damage thereby 
delaying plant senescence (Iqbal et al., 2012). Evidence has shown that 
impairment in the function of GABA shunt relatively leads to elevated 
levels of ROS under stress conditions (Bouche et al., 2003). Yang et al. 
(2011) investigated the role of GABA treatment supplemented exoge-
nously (5 mM) on antioxidant enzymes, chilling injury, and energy 
charge in peach fruit. Further, they concluded that GABA treatment led 
to inhibition in chilling injury and enhanced activity of antioxidant 
enzymes and maintained energy level in peach fruits. GABA thus induces 

tolerance against abiotic stresses and plays a pivotal role in stress 
adaptation by delaying plant senescence (Bouche et al., 2003). 

4.2. GABA in regulating cytosolic pH during senescence 

Plant senescence is characterised as a type of programmed cell death 
(PCD) which is regulated by many signal molecules. GABA is associated 
with regulation of plant senescence in many ways, one of which main-
taining the cytosolic pH in the cell. Recent works have demonstrated the 
role of GABA signalling in the plant senescence (Ramesh et al., 2015). In 
the senescing leaves, the static state of the cells is altered, which 
adversely affects ion transport in and out of the cell membranes (Del 
Duca et al., 2014). Cytosolic pH is also altered which hampers normal 
growth and development of the plant. However, GABA has prominent 
role in maintaining cytosolic pH homeostasis. It has been shown that 
reduction in cytosolic pH under low oxygen conditions caused by 
various abiotic stresses such as flooding (Roberts et al., 1984) in plants 
accelerates the GABA accumulation (Kinnersley and Turano, 2000). This 
further caused mechanical damage accompanied by organic acids 
discharge into the cytosol, due to rupturing of vacuolar membranes 
resulting in reduced pH levels and increased acidification of cytosol. 
Conditions like hypoxia are known to reduce cytosolic pH in the plants, 
leading to low intracellular pH from standard physiological values, 
stimulates the activity of L-GAD resulting in increased levels of GABA 
(Crawford et al., 1994). In a study, it was demonstrated that rapid GABA 
synthesis occurs after addition of a weak acid resulting in a decreased 
cytosolic pH of 0.60 units having a half-time for the response of 
approximately 2 s (Crawford et al., 1994). It was also evidently shown 
that after several minutes of a reduction in pH (0.5 to 0.6 pH units) 
during hypoxia, GABA synthesis was stimulated (Roberts et al., 1992). 
Simultaneous elevated levels of cytosolic Ca2+ are observed with 
reduced cytosolic pH values (Gehring et al., 1990). Consequently, 
elevated levels of Ca2+ possibly act as a signal stimulating activity of 
enzyme L-Glu decarboxylase (Crawford et al., 1994). In Dacus carota 
(carrot) cells, it was demonstrated when the pH decreases, there is an 
increase in glutamate decarboxylation which is a proton consuming 
reaction (Carroll et al., 1994). This reaction facilitates GABA accumu-
lation which acts as a sink for the excess of cytosolic protons and 
maintains pH homeostasis (Carroll et al., 1994). 

4.3. GABA involvement in maintaining carbon‑nitrogen pool in plants 
during senescence 

The availability of C and N is a crucial factor in sustaining plant 
growth, development and metabolism (Coruzzi and Zhou, 2001). Add-
ing to this, a significant balance in C and N pools with respect to each 
other must be highly coordinated (Bao et al., 2015) i.e., balance in C/N 
ratio which plays a regulatory role in plant growth and development in 
the standard growth conditions (Martin et al., 2002). The availability C 
(mostly in the form of sugars) and N in significant amounts maintaining 
C: N balance is suggested to be an important parameter not only in plant 
growth and metabolism but also in senescence progression (Aoyama 
et al., 2014). Deficiency in N leads to increased sugar accumulation 
leading to elevated C levels in plants (Ono et al., 1996). Explicit parti-
tioning of C and N sources enable plants to sense and adapt to changing 
C and N availability conditions (Aoyama et al., 2014). Plants also 
maintain C: N pool balance by significant partitioning of C and N sources 
and modulations in metabolic activity of C and N within the cell (Sato 
et al., 2011; Sulpice et al., 2013; Aoyama et al., 2014). The C and N 
interaction is controlled by an intricate network of signals derived from 
nitrate, ammonium (Nunes-Nesi et al., 2010), and N-containing me-
tabolites such as glutamate, glutamine, and aspartate (Miller et al., 
2008), in other side signals induced from C metabolism via CO2 (Nunes- 
Nesi et al., 2010) and C skeletons from TCA cycle which are required for 
NH4

+ assimilation (Naliwajski and Skłodowska, 2018). GABA is primar-
ily biosynthesized from glutamate and closely associated with the TCA 
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cycle in plants (Fig. 3). In Arabidopsis seedlings, exogenous application 
of GABA (50 mM) significantly stimulated root growth (in 1/8 strength 
Medium); increased nitrate uptake and N accumulation (when NO3

−

levels <40 mM in full strength MS media) along with the enhanced 
activities of enzymes involved in N metabolism such as nitrate reductase 
(NR), glutamate synthase (NADH-GOGAT), glutamine synthetase (GS) 
etc. in the growth medium (Barbosa et al., 2010). This study suggests 
that based on NO3

− concentration in the plant, GABA mediates the ac-
tivity of enzymes involved in N metabolism and speculates a crucial role 
of GABA in maintaining C:N pools within the plant cells. GABA meta-
bolism is suggested to be the modulator in maintenance of C/N balance 
in plants (Fait et al., 2008). In a study of postharvest citrus fruit Hirado 
Buntan Pummelo, GABA shunt catabolises organic acids (Katz et al., 
2011) and links organic acid catabolism and amino acid production (Sun 
et al., 2013). With the construction and screening of transgenic tomato 
deficient in succinyl-CoA ligase (SCoAL) activity, GABA metabolism was 
evidently shown to bypass major section of TCA cycle constituting 2-OG 
to the succinate, in plants (Studart-Guimarães et al., 2007), thereby 
giving a significant evidence for functional association of GABA meta-
bolism and TCA cycle (Studart-Guimarães et al., 2007). In this study, 
inconsequential effects of repressed SCoAL activity in tomato such as 
altered respiration, photosynthesis, and growth rates were observed 
(Studart-Guimarães et al., 2007). The reduction in SCoAL activity 
beyond the threshold value resulted in transcriptionally mediated up- 
regulation of the GABA shunt (Studart-Guimarães et al., 2007). The 
inhibition of AKG dehydrogenase in Solanum tuberosum (potato) slices 
demonstrated its role in both GABA shunt and TCA cycle (Araújo et al., 
2008). Both AKG dehydrogenase and SCoAL enzymes circumvents the 
GABA shunt and, in both cases, increased activity of GABA shunt 
compensated for the lost activity of these TCA cycle enzymes (Michaeli 
and Fromm, 2015). Both at metabolome and transcriptome levels, GABA 
is associated with primary C metabolism by characterising transcrip-
tional co-response of gene associated with GABA shunt pathways (i.e., 
GAD2 and SSADH) with that of those associated with primary C meta-
bolism (Fait et al., 2008). GABA-T has been also identified among the 
SAGs (senescence-associated genes) in leaf senescence (Ansari and Chen, 
2009; Ansari et al., 2005; Jalil et al., 2019). Understanding the dynamics 
of GABA transportation can unravel speculative metabolic and signal-
ling roles associated with GABA in plants. GABA mediated C metabolism 

and respiration is suggestively dependent on carrier protein regulated 
GABA transport from cytosol to mitochondria (Michaeli et al., 2011). 
AtGABP, a GABA transporter from APC family is suggested to be an 
important transporter for prominent incorporation of GABA into TCA 
cycle in Arabidopsis. Metabolic profiling of mutant lines of Arabidopsis 
GABA-P gabp characterised GABA shunt as a functionally important 
process in regulation of primary metabolism across mitochondrial 
compartment, enhancement in activity of the TCA cycle, and in the 
maintaining C and N pool balance (Michaeli et al., 2011). Abolition of 
growth defects were also observed after complementing GABP, which is 
ectopically expressed with the gabp mutants under C deficiency sup-
porting growth under limited C availability. Defective growth of gabp 
mutants and efficient growth in WT plants amidst functional AtGABP by 
sustaining greater C levels were observed respectively. It was also re-
ported that impaired incorporation of GABA into mitochondria can lead 
to re-allocation of N (Michaeli et al., 2011). The activity of GABA shunt 
is demonstrated as the connecting bridges between C and N metabolism 
in leaves of Xanthium strumarium (cocklebur) (Tcherkez et al., 2009). 
14–3-3 proteins have a crucial regulatory role in the C:N metabolism in 
plants (Lancien and Roberts, 2006) and these proteins exhibit 
phosphorylation-dependent interaction with other target proteins to 
accomplish their function (Lancien and Roberts, 2006). Combined ac-
tion of GABA with calcium are prominently involved in 14–3-3 genes 
regulation (Carillo, 2018). It is relevant in C–N balance since 14–3- 3 
proteins targets several key enzymes of C–N metabolism such as nitrate 
reductase (Comparot et al., 2003), glutamine synthetase (Moorhead 
et al., 1999), starch synthase III (Comparot et al., 2003), glyceraldehyde- 
3-PDH (Lancien and Roberts, 2006). 

Role of GABA in regulating cytosolic pH, abiotic stress conditions 
and primary C and N metabolism which are the major senescence 
associated processes has been very well exemplified through several 
studies. This concludes that GABA has a strong connecting link with 
plant senescence. Further studies on GABA kinetics, its dose responses 
and GABA- induced changes in senescence associated gene expressions 
in plants can aid in deciphering hidden links between GABA and 
senescence. Exploitation of strategies altering GABA regulated dynamics 
in plant senescence can be very useful in alteration of plant growth and 
productivity to ensure agronomic sustainability. 

Fig. 3. Involvement of GABA shunt in scavenging 
mechanism of ROS during leaf senescence process. 
Leaf senescence can be induced by several factors 
including stress that synthesize excess amount of ROS 
due to disruption of cells, during leaf senescence, 
amino group from most of the amino acids can be 
transferred to α- ketoglutarate to form glutamate. In 
GABA shunt, glutamate with the help of GAD is 
converted into the GABA. GABA-T catalyses the 
conversion of GABA into succinic semialdehyde, 
which in turn is converted into succinate by SSADH 
and goes into TCA cycle. GABA shunt within the 
mitochondria may provide carbon skeleton to 
replenish carboxylic acids of TCA cycle. GABA shunt 
component and GABA metabolites has scavenging 
ability to reduce the production of free radicals dur-
ing leaf senescence condition. 
GDH: Glutamate dehydrogenase, GAD: Glutamate 
decarboxylase, α-KGDH: α-ketoglutarate dehydroge-
nase, GABA-T: GABA-transaminase, SSADH: Succinic 
semialdehyde dehydrogenase, SCS: Succinyl CoA 
synthetase, TCA: Tricarboxylic Acid, ROS: Reactive 
oxygen species, CaM: Calmodulin (Calcium binding 
protein). The dark arrow indicates the direction of 
the reaction during senescence and dotted arrows 
shows the scavenging activity of GABA shunt com-
ponents for ROS.   
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5. GABA in mitigation of abiotic stresses 

Plant metabolites accumulate during abiotic stress conditions and 
among these, GABA kinetics shows rapid increases in endogenous GABA 
concentration and external supply of GABA under stress conditions such 
as temperature stress (Priya et al., 2019), salt stress (Xing et al., 2007; 
Khanna et al., 2021), oxygen stress (Miyashita and Good, 2008), acidosis 
(Crawford et al., 1994) and mechanical damages (Ramputh and Bown, 
1996) and can help in mitigating abiotic stress. Exogenous GABA sup-
plementation significantly reduces ROS accumulation and protects the 
plant from oxidative damage as observed in Lycopersicon esculentum 
(tomato), Primus persica (peach; Shang et al., 2011), Triticum aestivum 
(wheat; Al-Quraan et al., 2013), Cucumis melon (muskmelon; Xiang 
et al., 2016). Effective role of GABA in mitigating heat stress induced 
oxidative damages in plants and simultaneous enhancement in vegeta-
tive and reproductive growth was observed in Vigna radiata L. (mung-
bean; Priya et al., 2019). Exogenous GABA application substantially 
reduced MDA levels and H2O2 concentration in addition to enhanced 
antioxidant activities within the leaves and anthers (Priya et al., 2019). 
In this study, GABA also increased C metabolism and upregulated 
osmolyte synthesis that improved C fixation and assimilation, and 
improved leaf water status respectively. Other parameters related to 
reproductive growth such as pollen germination, stigma receptivity, 
pollen and ovule viability were also enhanced. An investigation based on 
GAD2 activity in Camellia sinensis (Tea) suggested that unfavourable 
constraints such as extreme oxygen deficiency and mechanical damage 
affects expression level of the genes involved in GABA accumulation as 
hypothesised by high expression of CsGAD2 during anoxic conditions 
(Mei et al., 2016). It has also been reported that GABA accumulation in 
tea plants subjected mechanical damage and anoxic conditions is 
mediated by combined effects of CsGAD2 mRNA expression levels and 
CaM mediated enzymatic activation of CsGADs (Mei et al., 2016). GABA 
mediated abiotic stress responses in plants show significant correlation 
with oxidative burst that occur due to ROS accumulation (Al-Quraan 
et al., 2013; Cheng et al., 2018). GABA is a stress responsive metabolite 
that combats oxidative damages by reducing ROS accumulation within 
the plants (Carillo, 2018). Significant accumulation of GABA and other 
metabolites of GABA shunt such as glutamate and alanine occur in CaM 
mutant lines with T-DNA insertions in Arabidopsis during growth and 
seed germination due to induced oxidation stress (via treatment with 
H2O2 and paraquat; Al-Quraan et al., 2011). This speculates the role of 
GABA, Ca2+ signalling and CaM in regulating ROS equilibrium, reduc-
tion of oxidative stress induced damages in plant cell and involvement in 
plant growth related mechanisms and developmental processes. 

Molecular and metabolic characterisation of GABA during stress 
conditions can enhance advancements in strategies to induce stress 
tolerance in the plants. In vitro analysis revealed that during salinity 
stress, the activity of GAD and GABA-TP markedly increased in Arabi-
dopsis while the transcriptional analysis revealed that GABA meta-
bolism genes significantly upregulated on NaCl treatment (Renault 
et al., 2010). During salinity stress, GABA accumulation has been 
observed in various plant species, including muskmelon (Xiang et al., 
2016), Hordeum vulgare (barley; Widodo et al., 2009), and soybean 
(Zhang et al., 2011). Metabolites of GABA shunt may also have a deci-
sive role in osmoregulation, including C and N metabolism and signal-
ling in relation to salt and osmotic stress. In response to the mannitol 
treatments, similar sensitivity patterns were observed concluding that 
high accumulation of GABA content act as osmo-protectant during 
oxidative and osmotic stress conditions (Al-Quraan and Al-Share, 2016; 
Jalil et al., 2017). GABA priming has been effectively used to enhance 
abiotic stress tolerance in the plants over past few years. GABA primed 
Piper nigrum (black pepper) exhibited osmotic stress tolerance when 
imparted with PEG stress by reducing the distribution of stress related 
metabolites and upregulating defence related metabolic activities 
(Vijayakumari and Puthur, 2016). Synthesis of sugar moieties also 
increased in the samples primed with GABA (2 mM) along with the 

reduced ROS accumulation, maintained cell turgor, reduced chlorophyll 
degradation and enhanced carotenoid synthesis. Al-Quraan and Al- 
Share (2016) studied seed germination rate in the Arabidopsis wild 
type and mutant lines namely pop2 (line 1), pop2–1 (line 2) and pop2–3 
(line 3) lacking corresponding transcripts of the GABA-TA gene. In this 
study, mutants showed successful germination. However, over- 
sensitivity in temperature defects in GABA-T led to impaired GABA 
accumulation, hindering growth and development of the plant (Al- 
Quraan and Al-Share, 2016). Locy et al. (2000) demonstrated that GABA 
accumulation during high temperature stress is mediated by the levels of 
cytosolic Ca2+ ions counteracting the possible involvement of calcium 
transport inhibitors in regulating heat stress induced GABA accumula-
tion in Arabidopsis seedlings. GAD is the key enzyme for GABA accu-
mulation during various abiotic stresses and its activity is mediated by 
CaM binding to C-terminal regions of the GAD enzyme (Arazi et al., 
1995). GAD activity mediated by elevated Ca2+ levels lead to increased 
GABA accumulation which in turn triggers Ca2+ extrusion and estab-
lishes calcium homeostasis. 

GABA also ameliorate roots ability for active extrusion of Ca2+ ions 
that allow the plants to maintain H2O2 signalling during flooding 
(Shabala et al., 2014). GABA significantly reduces salt damage during 
plant developmental processes such as seed germination by activating 
enzymes associated with antioxidant defence mechanism such as su-
peroxide dismutase (SOD), ascorbate peroxidase (APX) and catalase 
(CAT), guaiacol peroxidase (GPOX), monodehydroascorbate reductase 
(MDHR) that significantly reduced the oxidative outburst in white clo-
ver (Cheng et al., 2018). GABA also mediates plant growth by generating 
tolerance against toxicity of heavy metal such as cadmium (Seifikalhor 
et al., 2020). Exogenous application of GABA improved Cd2+ toxicity in 
maize and salinity stress in wheat by elevating antioxidant defence ac-
tivities via substantial elevations in activity of SOD, APX and CAT. GABA 
mediated reduction in oxidative stress was accompanied by ameliora-
tion in plant growth, cellular metabolism, photosynthetic efficiency, ion 
homeostasis, cell membrane integrity (Seifikalhor et al., 2020; Khanna 
et al., 2021). Deciphering molecular and biochemical sensors that 
regulate GABA induced oxidative stress tolerance in plants can be uti-
lised in strategies for production of tolerant varieties with utmost effi-
ciency. Studies pertaining to signal transduction mechanisms underlying 
GABA induced stress tolerance will help to determine protective roles of 
GABA in detail. 

6. Conclusion and future prospects 

GABA, being a multifunctional molecule acts as both metabolite and 
signalling molecule. GABA is synthesised and metabolised via GABA 
shunt pathway which has an important role in plants life span. GABA 
plays a pivotal role in maintaining C:N pool within the plant cell and is 
also involved in the N metabolism that is not only important for leaf 
senescence, but also for whole plant development. Additionally, GABA 
plays a crucial role in scavenging of ROS generated rapidly due to 
disruption in intracellular redox equilibrium and hence significantly 
mitigates oxidative stress induced damages in plants. Therefore, un-
derstanding the free radical scavenging mechanism through GABA 
during plants growth, development, and senescence is very vital for the 
plant improvement. 
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