
Computer Networks 216 (2022) 109227

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Latency control in service chaining using P4-based data plane
programmability
Francesco Paolucci a,∗, Davide Scano b, Piero Castoldi b, Emiliano De Paoli c

a CNIT, Via G. Moruzzi, 56124 Pisa, Italy
b Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy
c MBDA Italia, Roma, Italy

A R T I C L E I N F O

MSC:
00-01
99-00

Keywords:
NFV
SDN
P4
Latency
Virtual network function
Switch
Data center

A B S T R A C T

Service chaining is becoming one of the most considered service deployment frameworks in the context of
Network Function Virtualization (NFV) in edge and data center environments, conveniently supported by
automatic connectivity configurations offered by Software Defined Networking (SDN). Current research on
the topic is focusing on how to guarantee Quality of Service (QoS) in terms of guaranteed end-to-end latency
for time critical services. Indeed, latency issues may depend on intra-server virtualization inefficiencies, leading
to Virtual Network Function (VNF) delivery delays, or by congestion events occurring at intermediate network
elements connecting VNFs. Latency control requires stateful information such as flow delay measurements at
a per-packet level, typically not available at traditional SDN switches or inside the VNF.

This paper proposes the adoption of SDN data plane programmability exploiting the P4 language and
presents two P4 pipeline solutions, suitable for both intra-rack and inter-rack service chain deployments, to
automatically check the path latency experienced by selected high priority flows, also resorting to the recent
in-band telemetry applications. The programmable pipelines enforce proactive in-network functions, such as
priority change or drop actions, in order to guarantee a bound SFC segment latency delivery, including both
the network and the segment VNFs. The proposed solutions are implemented and evaluated in a network
testbed employing programmable software switches showing their effectiveness in guaranteeing the configured
end-to-end latency, and the limited effort in terms of additional processing at the P4 switch. The evaluation is
carried out using the reference P4 software switch, i.e., BMv2. The aim is to validate the full P4 capabilities
and the code feasibility in terms of scalability, load and resource impact and added intra-switch latency. The
experimental results show the proposed approach scales with the number of forwarded flows and achieves
per-segment latency control enforcement in both congested and non-congested scenarios with a very limited
impact on the switch extra-latency, exploiting finer per-packet tuning of drop and priority change simply
applicable through flow entry configuration. Applicability analysis on hardware switches guaranteeing line
rate performance are provided.
1. Introduction

Network Service Function Chaining (SFC) represents an attractive
solution to deploy network services and tenants with application-
oriented differentiation in the context of the Network Function Vir-
tualization (NFV) and Software Defined Networks (SDN) [1–5]. Such
differentiation is realized by deploying and placing a number of Virtual
Network Functions (VNFs) in the network and configuring traffic flows
to selectively reach the desired VNF set in a chained (i.e., ordered)
fashion to realize the desired Quality of Service (QoS). Some pre-
defined VNFs enable service treatment (e.g., traffic profiler), traffic

∗ Corresponding author.
E-mail address: francesco.paolucci@cnit.it (F. Paolucci).

engineering (e.g., transport-layer balancer), application-specific pro-
cessing (e.g., video transcoding), security (e.g., firewall function). All
such functions are conveniently deployed on-demand as virtualized re-
sources, such as virtual machines/containers/serverless function codes
in the network cloud and edge clusters, with significant increase of
service flexibility and cost reduction.

However, the chaining of virtualized services running as software
releases on general purpose CPU, memory and storage resources offered
by the cloud/edge are prone to performance limitations due to the ab-
sence of dedicated bare metal hardware platforms [3]. Virtual machines
and containers are subject to a number of performance issues due to I/O
vailable online 30 July 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109227
Received 23 March 2022; Received in revised form 10 June 2022; Accepted 22 Jul
y 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:francesco.paolucci@cnit.it
https://doi.org/10.1016/j.comnet.2022.109227
https://doi.org/10.1016/j.comnet.2022.109227
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109227&domain=pdf


Computer Networks 216 (2022) 109227F. Paolucci et al.
interrupts, operating system scheduling, CPU core scaling issues [6],
virtual resource driver configuration and overloading. Such limitation
may impact the VNF delivery delay, a key performance indicator for
latency-critical service chains. The introduction of efficient I/O frame-
works such as the Data Plane Development Kit (DPDK) may attenuate,
but not delete, such issues, especially for time-critical services or when
CPU and/or Network Interface Card (NIC) resources are limited [7,8].

On the network side, in the standard SDN framework, advanced
packet treatment and processing are possible only sending out the
packet to the SDN controller. Such procedures are prone to noticeable
scalability issues given the single point of processing represented by
the SDN controller. Moreover, the considered solution is not feasible
for all the use cases in which latency constraints represent a key
performance indicator. However, such indicators are not easy to extract
from traditional SDN switches. Moreover, congestion events at the
network level may break the latency bounds assured for the service
chain deployment.

The SDN data plane programmability conceives a novel process-
ing framework inside the network element directly, resorting to pro-
grammable pipelines [9]. The programmability include the definition
at the switch level of custom parsers, flow tables, actions and stateful
objects able to provide advanced functions that are not available with
a standard SDN switch. The programmability resorts to a platform-
agnostic high-level language called P4. The P4 (Programming Protocol-
independent Packet Processors, p4.org) is a high-level programming
language explicitly devoted to packet processors data plane [10]. The
novelty and the potentials introduced by P4 has gained significant
attention and interest by many chip manufacturers and the networking
researchers [11–14]. Today, the P4.org ecosystem consortium includes
more than 50 industrial corporations (e.g., Cisco, Dell, Google, HPE,
Intel, Huawei, Juniper, Microsoft, ZTE) and many academic partners.
The P4 programmability can be extended to programmable hardware
switches (e.g., Intel Tofino and NVIDIA/Mellanox Spectrum-X), Linux
servers employing DPDK or AF-XDP, and NIC. The main idea behind
P4 is that traditional SDN-based control plane is able to populate an
SDN network element with flow entries and actions related to standard
pipelines, but it cannot explicitly program the data plane, while P4 may
define novel pipelines with stateful capabilities, thus enabling innova-
tive and decentralized in-network functions, ranging from telemetry up
to cybersecurity applications [15].

This paper proposes novel P4 pipelines at the switch level to control
the latency of service chained flows in a stand-alone and decentralized
configuration. The proposed programmability allows to monitor the
combined network/VNF delay variations accumulated by latency criti-
cal flow packets traversing one or a set of chained VNFs. The pipelines
are programmed to enforce traffic treatment (e.g., change of priority,
drop) on a per-packet basis, guaranteeing a maximum accumulated
latency bound on the SFC network paths (i.e., segments) connecting
the chained VNFs. In particular, two configurations are explored, im-
plemented and evaluated in a P4 network testbed: (1) a stand-alone
solution conceiving a single switch attached to a number of VNFs, re-
producing intra-data center involving the top-of-rack switch, (2) a num-
ber of decentralized switches serving different VNFs each and employ-
ing extended in-band network telemetry (INT) solutions, reproducing
inter-rack, inter-cluster and inter-data center chaining scenarios.

The evaluation is carried out using the BMv2 software switch [16].
Although not designed for high performance (i.e., maximum achieved
line rate is around some Gbps), the BMv2 is the only platform that fully
supports all the P4 processing capabilities with the highest degree of
freedom. The evaluation highlights the impact of the proposed pipelines
with respect to the reference pipeline only providing layer-2 forward-
ing, providing evidence that the solution is lightweight, scalable and
feasible for hardware platforms, given the limited amount of employed
stateful register resources.

The paper is organized as follows. In Section 2 we discuss the main
2

issues related to the latency control in SFC and review the current
state of the art of the literature, addressing the solutions proposed so
far especially targeting data plane programmability. In Section 3 we
propose our P4-based latency control solutions at the programmable
switches, describing the rationale, the algorithms and the P4 design for
the two baseline use cases (i.e., stand-alone switch, multi-switch INT
segment). In Section 4 we report the experimental evaluations with
a detailed and extensive set of results, highlighting the scalability of
the solutions and the impact of each P4 tuning parameter. In addition,
we discuss in detail the applicability of the solutions in the current
programmable hardware platforms supporting P4. Finally, we draw the
conclusions in Section 5.

2. P4 and service chaining latency: current issues

Data plane programmability in SDN enables the deployment of
in-network functions at the hardware level of the switches. This is
particularly attractive for SFC, in which a number of VNFs in a cascade
configuration need to be connected using network routes guaranteeing
QoS requirements.

The scenario of Fig. 1 illustrates the SFC flows deployment on differ-
ent data center scenarios, assuming the SDN framework. The red service
chain is made of three VNFs (i.e., V1a, V1b and V1c) instantiated in
the same data center. In particular, V1b and V1c are instantiated in
the same rack, thus the top-of-rack switch is configured to send and
receive different flows belonging to the same service chain, (i.e., flow
entries to forward V1a to V1b and V1b to V1c). Instead, the green
service deploys three VNFs in three different racks, in addition V2b and
V2c are deployed in a different cluster (or another data center) with
respect to V2a. In this case, the VNFs are connected by a network path
spanning a high number of SDN switches (e.g., 4 switches connecting
V2a to V2b). Typically, QoS constraints are enforced at the VNF. The
QoS requirements related to network performance, for example service
latency constraints, require active cooperation between switches. In
particular, with reference to SFC, two main issues prevent a full control
of the packet latency along the chain:

1. the unpredictable packet delay experienced at each VNF step,
due to software virtualization issues;

2. the network congestion events at each switch of the service
chain.

Accumulated latencies originated by VNFs and switches may lead
to bursts of delayed, high jitter packets. Such combined latency control
is not straightforward, since it may be monitored locally, not in a
distributed and proactive fashion. For example, INT may be exploited
to monitor the network delay and pro-actively instructing in-network
dynamic priority [17], however per-packet monitoring at the VNF level
may not scale. Additional issues rely on the VNF packet manipulation,
so that a single end-to-end flow may be terminated at some VNFs or
splitted in segmented sub flows with different network matches, leading
to significant end-to-end monitoring issues.

2.1. Related work on service chaining and data plane programmability

The introduction of data plane programmability has pushed the
research ecosystem to propose novel, extended and high-performance
service chain architectures, workflows and technologies resorting to
NFV offload, stateful traffic steering and advanced functions, that have
been proposed in different literature works to enable efficient SFC
solutions.

First, the role of innovative I/O acceleration platforms and tools
able to speed up virtual functions chaining inside a single host, such
as the Virtual Ethernet Bridge (VEB), the Ethernet Port Aggregator
(VEPA), the Single Root IO Virtualization (SR-IOV) has lead to a
relevant research branch demonstrating that service function chain-

ing achieves significant scalability (i.e., hundreds of virtual functions)



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 1. Example of service chained virtual network functions in inter/intra data center scenario. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
and reduced intra-VNF latency burden [18]. For example, the works
in [19,20] target service chaining performance improvement, in terms
of throughput and latency, resorting to the SR-IOV technique, allowing
buffer separation for each VNF at the NIC level (i.e., virtual NIC). The
analysis considers undersubscribed and oversubscribed systems.

Data plane programmability at the SDN level introduces a further
acceleration degree to SFC, allowing the offloading of selected network
functions inside programmable devices. The work in [21] proposes
the adoption of a chaining-box, developed as a Berkeley Packet Filter
(BPF), a dedicated sequence of stages performing all the needed service
function actions and achieving up to 40% latency decrease with respect
to standard solutions. The work in [22] exploits strict source routing to
deploy SFC-based traffic steering including SFC labeling and tableless
switches forwarding based on label computation. The work in [23]
proposes a framework to deploy service function parallelism, conceived
to execute selected VNFs in parallel, thus achieving significant latency
reduction. The work utilizes a DPDK-based container to adapt and
replicate packet flows to be sent and received to/from parallel VNF
instances.

A number of recent works are focused on the introduction of P4
for VNFs offloading, handling and for specific in-network and protocol
solutions. Concerning P4-based VNF offloading, the work in [24] pro-
poses a set of primitives processing SFC expressions directly deployed
in P4 programs, drastically improving the performance with respect
to software-based solutions. The work in [25] presents an overall
offloading implementation of multiple service chain functions directly
implemented inside a P4 switch to perform network acceleration. The
works in [26] and in [27] illustrate two design methodologies for im-
plementing multiple network functions and their programmable service
chains inside a single P4 switch, resorting to FPGA and bare metal
switch platforms, respectively, and showing constant latency perfor-
mance. The work in [28] improves SFC performance by implementing
P4 segment routing at the switches and SR-IOV virtualization at the
hosts. A similar work in [29] considers the use of P4 to decompose
the execution of pre-programmed VNFs in a network processor us-
ing a multi-level chaining scheme in order to optimize the resource
allocation. A similar approach was considered by the work in [30], in-
cluding the recirculation of functions over a programmable data plane
resource and a service function chain manager performing placement
and ordering of functions to minimize the chain completion time.

Concerning in-network functions for latency-critical services, the
work in [17] implements extended INT and per-packet priority tuning
at P4 switches in order to allow fast packet transit only for delayed
traffic in the INT domain. The work in [31] proposes, in the framework
of beyond 5G services, an extension of INT at the user equipment to
measure and forecast traffic latency towards the target cloud resource,
3

while automating latency-aware P4 switch steering to the closest edge
node. Similarly, the work in [32] utilizes INT monitoring for dynamic
serverless application migration between edge nodes.

Concerning time-critical services, a number of works target the
problem of routing and placement of the VNFs belonging to a service
chain, including delay constraints [33–35]. However, these affect the
provisioning of the SFC rather than the control enforcement during
the SFC execution, due to dynamic network conditions. To the best
of our knowledge, there are not literature works addressing P4 in-
side programmable switches connecting VNFs for SFC end-to-end or
segment-based latency control at per-packet level.

2.2. Service chaining scenario and objective

The application of the P4 pipelines is mapped and evaluated in a
general service chaining scenario.

The flows subject to strict decentralized latency control are here-
after referred to as Latency Constrained flows (LC). Such flows are
directed to a number of processing VNFs defined by the service chain
graph. Some of these VNFs may terminate/modify the network protocol
stack. Thus, LC flows are mapped onto a sequence of sub flows F1, F2,
F3 with different L2, L3 and L4 fields, crossing network switches, even
repeatedly. Standard SDN implementations are not able to intercept LC
traffic properly, compute the latency associated to the flow sequence
and apply latency-aware policies. Moreover, solutions based on INT are
not feasible, since VNFs are often served by legacy NIC that do not
support INT processing. A possible solution is to tag LC traffic flows
with static high priority flag. However, this strategy has the following
drawbacks:

• all LC traffic is treated high priority in the same way, regardless
of the packet latency condition;

• additional concurrent high priority traffic is treated in the same
way, possibly competing in the switch queues and with undefined
behavior from the point of view of the SFC end-to-end latency;

• latency bounded conditions are not met and high priority guar-
antees the minimum latency only at the switch level, and not at
the service chain level including the transit to/from VNF.

The objectives of this work are the following:

1. Extend the service chain SDN framework to data plane pro-
grammability using P4 switches for segment latency control.

2. Implement, evaluate and demonstrate a proof-of concept of pro-
grammable P4 switch handling fine-grained per-packet treat-
ment without the intervention of the controller.

3. Implement in-network latency-bounded functions at the switches
able to compute multi-hop accumulated packet latency due to
both network and VNF and dynamic packet attribute enforce-
ment policies, such as priority change and early drop profiles in
the case of specific latency thresholds.



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 2. Combination of UC1 and UC2 for SFC latency segment control.
3. P4 latency control solutions

The description of the architectural and implemented solutions
based on the P4-based programmable data plane for service chains is
articulated considering two main baseline Use Cases for a given SFC
segment:

• Use Case 1 (UC1), considering a stand-alone scenario of a single
P4 switch connecting the considered VNF chains (e.g., single Top
of the Rack scenario)

• Use Case 2 (UC2), including a cooperation of different upstream
P4 switches running INT (e.g., inter-rack scenario).

While UC1 considers only a single switch segment, UC2 covers the
segment identified by a number of subsequent INT-enabled switches.
This scenario includes intra-data center connectivity. In addition, it
potentially includes inter-data center connectivity, provided that the
metro network connecting the data centers is INT-enabled and data
center controllers may issue dedicated flow entry configuration re-
quests to the metro network controller. The use cases are hereafter
described with their specific implemented solutions. Complex VNF
placements may be seen as the combination of the two aforemen-
tioned use cases. For example, the latency control of VNFs connected
to different switches can be decomposed in the latency control of
two UC1-based or UC2-based SFC segments (e.g., UC1+UC1 between
VNFs connected using two top-of-the rack switches, UC1+UC2 between
VNFs connected in intra-rack and subsequent inter-cluster configura-
tion, UC2+UC2 for double inter-cluster configuration). The example
of Fig. 2 shows the application of SFC segment latency control to
a SFC composed of five VNFs. In this case, three latency control
segments are envisioned: segment 1–2 (including VNF1 and VNF2)
and segment 3–4 (including VNF4 and VNF5) are controlled using the
stand-alone scenario (UC1), while segment 2–3 is under the INT-based
scenario (UC2), there being more then one switch connected without
intermediate VNFs.

3.1. UC1: Stand-alone P4 switch

3.1.1. Problem description and assumptions
In UC1, service chain is composed by different VNFs connected to

the same switch. To assure the latency control of a specific portion
of SFC (hereafter denoted as SFC segment), the switch must be aware
of each flow mapping forming the service chain. Moreover, to apply
latency-aware policies, a specific mechanism is required at the switch
to compute the latency that the flows are subject to in the forward and
backward paths to/from the different VNFs. Without loosing generality,
referring to Fig. 3, the key idea is to consider the ingress timestamp of
the SFC flow packet received at interface 1, and the ingress timestamp
of the same SFC flow packet received at interface 2, after all the
SFC attached VNFs have been crossed (i.e., the interface connected to
the last VNF). Intermediate VNF processes are considered within these
two reference timestamps. Fig. 3 shows the example of three VNFs,
however the concept is generalized to any number of attached VNFs.
4

The difference between the two edge timestamps represents the total
Fig. 3. Use Case 1: stand-alone switch scenario.

latency of the packet in the multi-VNF re-direction and transit. In order
to compute this latency properly, it is necessary to match the flows
correctly, temporarily store the packet timestamps in the switch and
correlate the timestamps to the same packet without any sequence am-
biguity. To solve the sequence order uncertainty, it may be not worth to
rely on standard matches based on addressing, since the various flows
may change MAC, IP and L4 ports after the VNF processing. Possible
sequencing may be exploited using the identification field of the IP
protocol, typically providing an incremental id value. In this paper,
without loosing of generality, we assume that packets are processed
sequentially with no packet loss at the VNF layer and without any
reordering process.

Another assumption is that the interfaces towards the VNF are
not subject to congestion issues. Since VNFs are related to latency
constrained traffic, logical interfaces are assumed configured in order
to assure the throughput of LC traffic at the minimum latency.

Thus, variable latency contribution sources are the VNFs and the
final forwarding to the next segment using the output interface towards
other switches or the SFC destination e.g., the latency experienced
between interface 2 and interface 3 in the example of Fig. 3. At
this regard, the co-existence between LC traffic and other high pri-
ority traffic may induce congestion at the node, thus increasing LC
latency in the SFC segment. For this reason, LC traffic needs to be
treated in a per-packet fashion and must be subject to strict latency-
constraint conditions, related to both upstream delay (i.e., VNF delays)
and switch-internal delay (e.g., congestion at the queue). Therefore,
the latency-controlled policy is applied to the SFC segment between
interface 1 and interface 3, thus accounting both the VNFs latency and
the intra-switch latency.

3.1.2. Latency control and policies
Given the aforementioned assumptions, a proactive per-packet la-

tency control policy at the switch is proposed.
Referring to Fig. 3, LC traffic is timestamp-stored at interface 1

(i.e., the interface connected to the upstream network segment, used
by LC traffic to reach the switch for the first time) and at interface 2,

(i.e., at the ingress interface connected to the last processed VNF, in



Computer Networks 216 (2022) 109227F. Paolucci et al.

t
T
t
a

a
r
o
l
e
o
a
o
h
r

𝑇
2
o
s

a
s
a
o
t
t
a
p
h
t
a
n
o
r
c
t
h

t
L
p
i
n
b
c
r
d

b
q

f
(
r
r

c
e
D
i
i
i
P
a

this case VNF3). The related ingress timestamps 𝑡1 and 𝑡2 are referred
o the same switch and thus are not prone to synchronization issues.
hus, the difference 𝑡2 − 𝑡1 is the latency experienced by the packet in
he multi-VNF processing steps. A second contribution must take into
ccount the switch queue time from interface 2 to interface 3.

The following workflow is proposed to store LC traffic timestamps
nd compute per-packet segment latency 𝑡2 − 𝑡1. A mobile window
egister array stores the ingress timestamps of the LC packets in the
rder they arrive. A specific offset register at each array identifies the
ast processed packet. This way, if the dimension of the array is large
nough to avoid cyclic rewrite operations, the timestamps at a given
ffset are referred to the same LC packet and latency can be computed
s the difference between the two timestamps identified by the offset
f the last array. Note that, if such assumptions are not valid, further
eader processing (e.g., the use of IP id field) may lead to the same
esult.

The total segment latency experienced by the packet is (𝑡2 − 𝑡1) +
𝑞 , where 𝑇𝑞 is the time spent to forward the packet from interface
to interface 3, where resource contention may take place with the

verall outgoing traffic and thus associated to the time spent in the
witch queue.

In order to implement latency-controlled policies, the rationale
ssumes that latency-sensitive services (in particular, hard time-critical
ervices, such as in avionics, automotive, spacecraft, IoT, military
pplications) need to be executed within a maximum time threshold,
ften referred to as worst-case execution time (WCET) [36,37]. In
hese contexts, a data must go through a long processing chain and
ransformations (functional chains) to reach the end of this chain
nd be definitively consumed by the effector. In many cases, if the
rocessing time is too long and exceeds the threshold, the information
as to be considered out-of-date and not usable, as it is known a-priori
hat the performance of the system (if the old data is used) is below the
cceptable QoS limit. Moreover, the circulation of the old data on the
etwork would also cause a further performance issue due to the useless
ccupation of network resources with the risk of congestion. For these
easons, the possible actions that a P4 switch can enforce on a time-
ritical SFC packet are either to speed up its forwarding (i.e., changing
he packet priority) if the accumulated latency is below but close to the
ard threshold, or to drop the packet if it already exceeds it.

The proposed latency-constrained policies introduce two parame-
ers, called Priority Latency (PL) and Drop Latency (DL). The Priority
atency (PL) is the maximum allowed segment latency for which no
riority change at the switch level is enforced. The Drop Latency (DL)
s the maximum allowed segment latency for which the packet is
ot dropped. The relationship between the two parameters is given
y 𝑃𝐿 ≤ 𝐷𝐿. The two DL and PL parameters are conceived to be
onfigured by the SDN controller in the switches during the SFC flow
ules instantiation and may be tuned if latency constraints are time
ependent. The proposed policies are the following:

1. If (𝑡2−𝑡1) + 𝑇𝑞 > 𝑃𝐿 then the packet is changed priority to speed
up its transmission and avoid congestion at the switch;

2. If (𝑡2 − 𝑡1) + 𝑇𝑞 > 𝐷𝐿 then the packet is dropped since the
information carried out is considered out of date.

Note that 𝑇𝑞 is the estimation (or a forecast) of 𝑇𝑞 . In fact, priority may
e enforced at the switch before the packet enters the scheduler and the
ueue. Thus, a P4 implementation has to implement 𝑇𝑞 computation.

3.1.3. P4 implementation
The considered P4 implementation is based on the V1 architectural

model assumed by the reference P4 software switch, the Behavioral
Model version 2 (BMv2) [16]. The model includes a programmable
ingress pipeline, a non-programmable queuing, replication and schedul-
ing module and a programmable egress pipeline. The ingress stage is
utilized to perform forwarding, while the egress pipeline is utilized to
5

perform operation after the forwarding output port assignment. The
proposed P4 implementation includes both the pipelines.

The internal structure of the ingress pipeline is depicted in Fig. 4.
The pipeline is executed after the P4 parsing section, not shown in
the figure. The pipeline includes the cascaded execution of three flow
tables:

1. Table0, responsible of packet forwarding;
2. Table Store, responsible of recording LC packet timestamp at its

first occurrence (𝑡1);
3. Table Enforce, responsible of recording LC packet timestamp

at its last occurrence (𝑡2) and applying per-packet latency-
constrained policies (priority, drop).

After parsing, the packets enter the Table0 table, responsible of
orwarding, i.e., selecting the output port based on L2 MAC addresses
switch behavior). Table Store is responsible of intercepting SFC traffic
eceived at interface 1 and activate the related action of storing the
elated timestamp 𝑡1 in a specific array t1 of programmable registers,

using a register offset1, pointing to the last processed packet index. At
the end of the action offset1 is incremented. The P4 code allows to
define the size of the register array, so that a reasonable size may be
allocated as a function of the average LC throughput, in order to avoid
overloading.

Table Enforce matches LC packets received at interface 2. The
related action stores the 𝑡2 timestamp in a second t2 register array using
the offset2 index. In addition, it reads the 𝑡1 register at the offset2 index
to retrieve the related 𝑡1 timestamp. Then, 𝑡2 is subtracted from 𝑡1 and
ompared with PL and DL, stored in appropriate registers. If latency
xceeds PL, the packet metadata priority is increased, and if exceeds
L the packet is dropped (using a P4 pre-defined drop action). Priority

s handled in BMv2 with seven levels selectively applied to each egress
nterface packet queue, once forwarding is performed [16]. In this
mplementation, priority is set to the maximum value when exceeding
L, in order to speed up packet transmission as fast as possible. To
ccount for the 𝑇𝑞 estimation, a feedback mechanism between the

ingress and the egress pipelines is implemented, shown in Fig. 4. The
egress pipeline includes a specific flow table called Congestion Check
that matches standard traffic (i.e., best effort transit traffic, not subject
to latency control) and evaluates the time spent by each matched packet
in the queue. Such data are retrieved using the pre-defined queueing
metadata, available once the packet has crossed the queue itself (i.e., in
the egress pipeline). The standard queueing metadata available in P4
switches are reported in the figure and include the queue entrance
timestamp, the queue size at both entrance and exit time instants, and
the time spent in the queue (i.e., deq_timedelta). The latter is written
in a specific register (T_queue), available at the ingress pipeline level.
The time spent in the queue by a packet is computed automatically
by the P4 switch in a very precise fashion. In fact, pre-defined packet
metadata are used to timestamp the packet before entering and after
exiting the queue, and the delay is the result of the subtraction of
the two metadata timestamps (e.g., in the BMv2 switch this delay
has 1 μs resolution). In this way, the switch estimates the queue time
that an incoming packet will likely experience in the case latency
policies are not applied to the packet. This queue time is utilized as
𝑇𝑞 in Table Enforce inside the ingress pipeline. This means that the
estimation considers the queueing time of the last best effort packet
exited from the queue at the time the considered packet is just entering
the queue, thus it offers the most updated snapshot of the queue state.
The computed 𝑇𝑞 may result to delayed latency estimation in case of
micro bursts (i.e., a congestion event in a very limited time between the
queue processing of the last packet and the entrance of the considered
packet). In this case the P4 code may be refined and the estimation may
consider additional queueing metadata, the queue depth at the packet
enqueue (𝑄𝑒) and dequeue time (𝑄𝑑), and the estimation updated as
𝑇𝑞 = 𝑑𝑒𝑞_𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 𝑄𝑑∕𝑄𝑒. The proposed implementation is applicable
to a different number of LC flows. The pipeline structure and the flow



Computer Networks 216 (2022) 109227F. Paolucci et al.

f
V
s
s
i
(

Fig. 4. UC1: P4 pipelines implementation.
3

a
b
U
s
i
w
a
e
I
A
i
r
r
a
m
i
h
(

o
p
t
u
a
t
i
l
a

tables are the same. For each LC flow, a couple of array registers needs
to be instantiated to store timestamps. The match between the flows
and the registers is performed using direct registers linked to Table
Store, allowing flow match along the detection of the registers used
by that flow. The P4 program may define the maximum number of
supported LC flows.

3.2. UC2: Multi-switch latency control using INT

The considered UC2 extends the applicability of UC1 by imposing
extended network segment latency policies involving a number of
different distributed switches. While UC1 confines the latency check
inside a stand-alone switch, UC2 introduces a switch network domain
and latency check is carried out resorting to INT. A INT-enabled domain
conceives a number of switches able to insert extra headers to selected
traffic carrying out switch metadata. As an example, the hop latency of
each switch is inserted in packet extra headers and carried out along
the network domain. The nodes are distinguished as source, transit and
sink nodes. A source node starts the INT extra-header, transit nodes add
their own extra headers, while the sink node extracts all extra headers
data and removes the extra headers to guarantee end-to- end traffic
transparency. The application of INT to latency-constrained traffic is
considered by extending the problem description and the scenario
described in UC1, as shown in Fig. 5. With respect to UC1, in UC2
the connection between the source and the switch is replaced with
a network domain of switches. In the case of programmable switches
(or, at least the switches at the domain edge), latency control may be
extended to all the network path and not confined in the VNF-to-VNF
processing as described in UC1. The key idea is that each switch may
insert the information related to its hop latency in each packet. It is
worthwhile to note that INT is implemented in a per-packet fashion.
That is, each packet is able to carry out the information related to
the actual latency experienced by the packet itself inside each different
traversed switch, and then along the network domain.

The scenario may be simplified as reported in Fig. 5 to explain the
extension of the latency control to a network domain. An upstream
source node is in charge of adding INT header to selected UDP traffic.
The source node inserts the experienced hop latency 𝑙ℎ1 experienced
in the source node. The INT packet is processed and updated by
transit switches (optionally computing 𝑙ℎ2 and 𝑙ℎ3, if the domain is
ully INT-enabled) and is received by the P4 switch attached to the
NF hosts acting as a INT-enabled sink switch. This way, the sink
witch removes the extra header and collects the hop latency of the
ource switch to be considered in the latency-based policies proposed
n UC1. Excluding transmission and propagation time contributions
6

stable delay contributions that may be estimated easily and considered
in the latency computation budget), the sink switch may monitor the
packet latency up to the ingress interface of the source node, thus
emulating a functional migration of interface 1 up to the source edge
INT switch interface 0 (see Fig. 5). The INT-enabled latency policies
applied at the sink switch are similar to UC1. However, in this case,
the 𝑡1 timestamp is decremented to account for the total accumulated
latency along the upstream network extracted by INT headers and
denoted as 𝑙ℎ.

The DL and PL definitions are the same, however applied to the
entire INT network segment (i.e., from interface 0 to interface 3). The
proposed policies in UC2 are the following:

1. If (𝑡2 − 𝑡1 + 𝑙ℎ) + 𝑇𝑞 > 𝑃𝐿 then the packet is changed priority to
speed up its transmission and avoid congestion at the switch;

2. If (𝑡2 − 𝑡1 + 𝑙ℎ) + 𝑇𝑞 > 𝐷𝐿 then the packet is dropped since the
information carried out is considered out of date.

.2.1. P4 implementation
The UC2 implementation includes the P4 codes of the source switch

nd the sink switch. Source INT switch P4 code is standard as provided
y the P4.org specifications. The sink switch code is an extension of the
C1 P4 code. The main differences are related to the ingress pipeline

tructure and the implemented actions. The ingress pipeline structure
s depicted in Fig. 6. First, the parser section has been enriched
ith the INT extra header structure definitions. These extended parsers
re required to process incoming INT-tagged packets properly and to
xtract hop latency values related to upstream switches. Details of the
NT parsers are reported in the P4.org specifications document [38].
dditional flow tables (INT source, transit, sink) are introduced to

nclude the full INT processing at each switch stage and for each switch
ole. In particular, dedicated flow entries are required to specify the
ole of the involved switch in the INT chain (i.e., source, transit, sink)
nd to specify the incoming interfaces, the traffic matches and the
etadata to be retrieved and encapsulated in the extra headers. In this

mplementation the INT header is created and conveyed over the UDP
eader. The carried metadata information are the switch hop latency
used) and the egress timestamp (not used).

The specific functions implemented in the sink node are the deletion
f the INT header and the insertion of specific INT fields inside the
acket metadata. The most important metadata retrieved by INT is
he source node hop latency. The forwarding table (Table 0) is left
nchanged with respect to UC1. The Store Table matches the LC traffic
nd stores in the registers array the ingress timestamp subtracted with
he source node hop latency (𝑡1 − 𝑙ℎ). The rest of the implementation
s the same of UC1, including the egress pipeline. In this way the same
atency policies are implemented by considering the packet latency
ccumulated in the two switches and in the VNF transit.



Computer Networks 216 (2022) 109227F. Paolucci et al.

4

g
e

p
o
r
s
e
p
i
p

1
j
s
t
o
s
a
t
c
l
m
r
a
a
e
m

Fig. 5. Use Case 2: distributed INT switch scenario.
Fig. 6. UC2: P4 implementation of the sink switch: ingress pipeline.
. Experimental evaluation

To evaluate the effectiveness of the proposed data plane pro-
rammability functionalities at the P4 switches, a comprehensive set of
xperimental evaluations have been carried out and hereafter reported.

The set of reported results aims at assessing the following key
erformance evaluation: (1) the low impact of the P4 codes in terms
f data plane resource load and increased intra-switch latency with
espect to standard P4 codes (e.g., layer-2 forwarding only) (2) the
calability of the P4 codes in terms of the number of considered flow
ntries related to transit traffic (3) the effectiveness of latency-control
olicies applied at the data plane for the UC1 and UC2 SFC segments
n both static and dynamic conditions, evaluating the benefits of the
olicies in the case of VNF delay and switch congestion events.

The P4 codes of UC1 and UC2 have been written in P4 version
6 [10], deployed using the p4c compiler and enforcing the resulting
son file in the running instance of the Behavioral Model version 2
oftware switch [16]. A unique P4 code, suitable for both source,
ransit and sink nodes in UC2 has been considered. Moreover, a number
f auxiliary P4 codes have been written to deploy the experimental
etup. The VNF considered in the evaluation has been designed to be

generalized VNF with the following capabilities: forwarding using
he same input/output port, configurable variable VNF processing time,
onfigurable packet treatment and manipulation at layer 2, layer 3 and
ayer 4. In particular, the VNF processing emulation has been imple-
ented resorting to a further P4 code (referred to as P4 Reflector VNF),

esponsible of forwarding and modifying the MAC addresses, the IP
ddresses and the UDP ports of selected incoming traffic flows. Finally,
simple forwarding P4 code has been employed as baseline code to

valuate the impact of the logic implemented for the latency-controlled
echanism.
7

Table 1
Spirent traffic generator parameters.

Traffic parameters Configured values

Interfaces 10GBE
Packet length (IP) 256 byte, 1500 byte
Transport protocol UDP
Number of flows up to 1000
IP address ranges (LC) 10.10.0.0/16
L4 port ranges (LC) [43 000, 47 000]
Throughput up to 1400 Mbit/s
Traffic duration 120 s

The experimental setups used for the two use cases are similar. The
traffic has been generated and analyzed using the Spirent N4U traffic
generator.The synthetic traffic parameters considered in the tests have
been summarized in Table 1, while the actual values are detailed in
the test description. The P4 switch under test have been deployed in
a Linux Ubuntu PC server (Intel Xeon CPU E5-2620 6-core 2.10 GHz,
16 GB RAM). The P4 Reflector VNF runs in a different Linux Ubuntu
PC server and the two servers are connected using a 10Gigabit Ethernet
copper cable interface. The P4 code implementing the considered use
cases (P4 file) are first compiled using the p4c compiler and specifying
the BMv2 simple switch instance as target node.

4.1. UC1 setup and results

The setup shown in Fig. 7 is utilized to perform the UC1 evaluation.
The generator is attached to two 10 Gb Ethernet optical interfaces and
generates three different flows: the Latency Constrained flow (LC) is the
flow subject to latency control, the Best Effort flow (BE) is the flow co-

routed with LC but not subject to latency control. A transit traffic with



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 7. Testbed used to evaluate Use Case 1.
Fig. 8. P4 switch flow entries for UC1 tests.
higher transmission rate have been added to emulate the medium and
low priority traffic at the switch. Both LC and BE traffics are directed
to the local VNF. Forwarding and latency control configurations are
enforced using specific flow entries at the P4 switch using the BMv2
command line interface (CLI).

The flow entries utilized to enable the P4 behavior for the three
considered flows are reported in Fig. 8. The first entries are related to
the configuration of the PL and DL parameters inside specific registers.
The congestion emulation entry is utilized to produce traffic congestion
at the P4 switch due to the limited transmission rate of output interface
3. Then, all the flow rules related to forwarding (table Table0) are
hereafter reported. Each traffic is identified by the input interface,
the source MAC and the destination MAC. For each match the related
set_egress_port action selects the output interface indicated after the
arrow as action parameter. The LC traffic needs to be matched in the
Store and Enforce tables. The two traffic matches are different since the
flows are modified by the P4 reflector VNF instance (incoming traffic
has 10.10.10.1 → 10.10.10.2 IP addresses, UDP ports set to 43 000
and 45 000, while outgoing traffic has 10.10.10.2 → 10.10.10.3 IP
addresses, UDP ports set to 45 000 and 47 000). The two tables require
to specify the incoming interface of the matched traffic (interface 1 for
store, interface 2 for enforce, see interface numbering in Fig. 7), thus
keeping the switch configuration extremely flexible. Finally, the egress
congestion check table match identifies the transit traffic through its
MAC addresses and the incoming interface (interface 1).

4.1.1. Switch throughput, end-to-end latency and scalability
The end-to-end latency performance of the switch related to transit

traffic is reported in Fig. 9. The plot shows the packet latency measured
by the Spirent analyzer able to sustain the throughput indicated by the
input load in the 𝑋-axis with a packet loss rate below 0.1%. Therefore,
for each plot, the point with the highest 𝑋-axis value represents the
maximum sustainable throughput of the P4 switch. The plot shows
that, using of 1500 byte long packets the switch is able to sustain
8

up to 1.4 Gbps throughput with a stable latency profile between 80
and 120 μs. Moreover, the impact of the latency control (FL) with
respect to standard forwarding function only (F) is limited, in the
order of 5–10 μs of additional latency. The throughput decreases with a
reduced packet length (i.e., 256 bytes), since the software switch has a
processing rate limitation based on the packet arrival rate. In this case
the throughput is reduced to around 300 Mbps and the additional load
induced by the latency control code is limited with respect to baseline
forwarding operations. This confirms that the latency control operation
has a limited impact in terms of processing burden inside the switch.

The plot of Fig. 10 evaluates the end-to-end latency of BE and LC
traffic traversing the switch, the VNF and the switch again. The plot
shows that the additional processing burden induced by the full la-
tency control processing results in an incremental latency contribution
between 20 μs and 50 μs, depending on the input traffic throughput.
This means that P4 latency control requires an additional latency
contribution at the switch level of tens of microseconds. The price to
pay for latency control is kept limited with respect to latency values
to be controlled, typically in the order of hundreds of microseconds. In
the case of congestion, the latency size is expected to increase at tens
of milliseconds. This confirms that latency control has a limited impact
on the switch processing and additional latency contribution.

Finally, scalability in terms of number of flow entries have been
evaluated. The flow entries are related to the forwarding Table 0
entries, impacting on the number and type of flows that need to be
forwarded. The results reported in Fig. 11 show that no significant
impact is achieved when increasing number of flow entries are actively
installed in the switch, from the point of view of switch latency. This
is confirmed by many studies in the literature. The impact relies only
in a slight restriction of the working range of the switch. In fact, the
switch achieves a 1.3 Gbps throughput with one entry, while it sustains
1.2 Gbps when 1000 entries are installed. Such limitation is due to the
internal software switch architecture. The switch instance is divided
in four main threads. When the most processing threads, running on



Computer Networks 216 (2022) 109227

9

F. Paolucci et al.

Fig. 9. End-to-end latency and sustainable throughput with (FL) and without (F) latency control functions (packet size 256 and 1500 bytes).

Fig. 10. Service chaining traffic end-to-end latency: impact of latency control workflows.

Fig. 11. Scalability in terms of installed forwarding flow rules.



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 12. Test 1.
a single CPU core, reaches 100% load, the switch becomes unstable
and starts discarding packets in a random fashion. This condition is
reached with a reduced throughput when an additional number of flow
entries occur. This behavior is typical of software switches, while it
is negligible in hardware programmed switches, since Ternary content
addressable (TCAM) memories are used and matches are solved with a
single CPU clock occurrence.

4.1.2. Dynamic behavior in case of congestion
In this set of tests, the switch behavior is evaluated in terms of

different end-to-end latency and packet loss rate as a function of time
when VNF traffic flows (LC and BE) are subject to congestion event
due to the activation of high rate transit traffic (transit). The dynamic
behavior of the switch depends on the values configured for DL and
PL with respect to the actual latency values due to congestion at
the switch. In these tests we have configured a standard scenario of
congestion at interface 3 of the switch. LC and BE traffic flows are
activated at time t = 0 with a transmission rate of 1000 packet/s each
(corresponding to 12 Mbps each), while transit traffic is activated at
time t = 10 s with a transmission rate of 7000 packet/s (corresponding
to 84 Mbps). The congestion is created inside the switch by limiting
the transmission rate of the P4 queue at 6000 packets/s for the only
outgoing interface 3. This amount of congestion causes a packet latency
of around 10 ms. Such congestion scenario is perfectly equivalent to
a real congestion, because it induces an increased size of the average
queue occupancy at the P4 switch. Three tests have been conducted,
setting the DL and PL parameters in different working zones with
respect to the average congestion latency.

In test 1, reported in Fig. 12, the congestion latency is lower than
the configured PL (set to 12 ms) and DL (set to 15 ms). This means
that both parameters allow for a latency control only when latency
exceeds 12 ms. The results show that, before congestion, VNF traffic
has a latency of around 600 μs (traffic generator → switch → VNF →
switch → traffic analyzer). With congestion, all traffics are subject to
the same treatment with a congestion drop of 13% (LC), 69% (BE) and
30% (transit). Most important, all latencies are around 11 ms, meaning
that all traffic flows are treated with same priority option inside the
switch.
10
In test 2, reported in Fig. 13, the congestion latency is lower than
the configured DL (set to 15 ms) but higher than PL (set to 8 ms). This
means that a latency lower than 8 ms is tolerated without priority,
while a maximum allowed latency is set to 15 ms. The results show
that, before congestion, VNF traffic has a latency of around 600 μs
(traffic generator-switch-VNF-switch-traffic analyzer). With congestion,
LC traffic is prioritized and not subject to congestion delay, thus
maintaining the e2e latency under 1 ms. Moreover, no packet loss
is experienced for LC traffic. The remaining traffic flows, both co-
routed (BE) and transit, experience congestion and are both shaped and
delayed. This is the expected effect of setting a reduced value of PL:
allowing improved priority traffic to avoid incoming congestion events
at the switch.

In test 3, reported in Fig. 14, the congestion latency is higher than
the configured PL (set to 5 ms) and DL (set to 8 ms). The behavior
is similar to the pattern observed in test 2, however in this case a
significant LC traffic shape occurs with a drop rate of around 99%,
given the strict latency constraint imposed by DL value.

4.1.3. Impact of PL and DL tuning
The role of PL and DL configurations and the related switch be-

havior is understood better when the switch is tested against different
latency conditions. The two main latency sources in UC1 are the
following: the accumulated VNF latency measured between interface
1 and interface 2, and the congestion latency at the switch. In the
following tests we evaluate such contributions and the role of PL and DL
in the latency control performance. In these tests the transmission rates
are the same of the previous tests (LC and BE set to 1000 packets/s,
transit set to 7000 packets/s).

In a first test session, we evaluate only the impact of the VNF delay
without any congestion event. To emulate such delay, we exploit the
tc linux command to the VNF outgoing interface adding an artificial
delay of 5 ms. Then, we measure the latency and the drop rate of VNF
flows as a function of different values of DL (PL is set to 1 ms). The
results are reported in Fig. 15. Results show that BE traffic is always
forwarded with a constant end-to-end (e2e) latency of around 5.42 ms.
However, LC traffic is fully dropped by the switch when DL < 5.5 ms.



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 13. Test 2.
Fig. 14. Test 3.
This because the accumulated latency is always higher than the DL
threshold, meaning that this portion of traffic is considered out-of-
dated. Intermediate shaping is performed for DL in the range 5.5–7 ms,
allowing only the packets with acceptable latency in the distribution.
When DL > 7 ms, all LC traffic is allowed and forwarded. The PL
configuration has not practical effect since priority is effective only in
the case of congestion.
11
In a second test session, we evaluate only the impact of the switch
congestion, reproducing the scenario shown in the dynamic behavior
tests. To this goal, the transmission queue rate of interface 3 has been
limited to 6000 packets/s. In this test session, first we evaluate the role
of PL in the behavior of the switch for VNF traffic, then we evaluate the
role of DL. The impact of PL is shown the plot reported in Fig. 16. For
these tests, DL was set to a very high value in order to be not effective
(i.e., traffic is never dropped by the latency control pipeline). Results



Computer Networks 216 (2022) 109227

12

F. Paolucci et al.

Fig. 15. Impact of DL tuning on delayed VNF.

Fig. 16. Impact of PL tuning on a congested scenario.

Fig. 17. Impact of DL tuning on a congested scenario.



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 18. Impact of DL tuning on a VNF-delayed and congested scenario.
Fig. 19. Testbed used to evaluate Use Case 2.
show that low values of PL activate priority change for LC traffic with
0% drop rate until PL reaches the average congestion time. For higher
values, priority is not activated and LC latency equals BE latency with
drop rates higher than zero, due to the queue saturation. The impact of
DL is shown in Fig. 17. In this case PL is set to a low value, so that all LC
packets are prioritized. The plot shows that LC is shaped with different
drop rates by the latency control policy until DL < 11.5 ms, always
maintaining the latency under 5 ms. Then, when DL > 11.5 ms, all
traffic is forwarded with priority and reduced latency (around 400 μs)
due to the priority.

The last test session includes both VNF delay and congestion and
results are plotted in Fig. 18. Traffic is delayed at the VNF and then
congested at the P4 switch. The BE traffic is always subject to 53%
drop and 16 ms latency. Latency control on LC traffic induces a total
drop until DL < 13 ms latency, decreasing traffic shaping with 13 ms
< DL < 15 ms. Then, for DL > 15 ms all traffic is forwarded with the
minimum achievable latency, provided that the delay accumulated at
the VNF may not be reduced.

The whole tests show that the impact of PL is extremely important
when congestion occurs at the switch level, otherwise it does not
provide any clear advantage. Conversely, the impact of DL is important
in each context, since it sets a threshold for the forwarding of packets
having a maximum tolerated amount of accumulated latency, acting as
a selective latency-based traffic shaper.

4.2. UC2 setup and results

The setup shown in Fig. 19 is utilized to perform the UC2 results.
An additional P4 switch is inserted in the network device chain acting
13
as INT source node. The second P4 switch acts as INT sink node and as
latency control switch. The generator is attached to two 10 Gb Ethernet
interfaces and is configured to generate and analyze the same three
different flows considered in UC1 tests. INT, forwarding and latency
control configurations are done using specific flow entries at the P4
switches using the BMv2 command line interface (CLI). The P4 code
used for INT P4 source and INT P4 sink switches is the same code,
putting together INT and latency control functions. The VNF reflector
code is the same described in UC1 tests.

The flow entries configured in the sink switch are shown in Fig. 20.
The entries related to latency control are the same with respect to
UC1. The additional entries are related to the INT sink operation. In
particular, the switch considers interface 1 as the incoming interface
to perform INT operation, moreover it acts as sink switch for traffic
destined to interface 2 (instruction int_set_sink). This means that traffic
destined to interface 2 will perform INT header pop operation. The
switch id has been set to 0 × 0d (13).

The results of UC2 are incremental with respect to UC1, meaning
that the general behavior of the switch, the tuning behavior of PL and
DL is the same of UC1.

The traffic captured at the outgoing interface of INT source node
is shown in Fig. 21. The capture shows the three traffic flows: the LC
traffic (exploded in the capture), the BE traffic (tagged as DIS packets)
and the transit traffic (tagged as IP traffic, since no L4 header has been
added). In particular, LC traffic is tagged with a new header setting the
total packet length to 1020 bytes (it was 996 in the previous capture).
The whole INT header is 24-byte long. The header is placed after the
UDP header and can be observed by noting that it is not recognized by
Wireshark and is embedded within the layer 4 payload. In fact, the



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 20. Sink P4 switch flow entries for UC2 tests.
Fig. 21. Wireshark capture of UC2 traffic showing the INT header.
first 24 bytes of the payload are exactly the INT header fields. The
fields are shown in the figure: the first 4 bytes are the shim header,
the second eight bytes are the INT header (the value 0 × a4 represents
the Instruction bitmap selecting switch_id, hop latency and ingress
timestamp), then the switch id reports the value 0 × 0a (switch id 10),
the hop latency of the packet (0 × 25, corresponding to 37 μs) and the
ingress timestamp of the packet inside the source node (0 × 1914869f,
corresponding to the value of 420.775.583 μs, around 7 min, after
the bootstrap of the switch). Additional captures and measurements
have been performed to derive the measured latency introduced by the
VNF when no artificial delay is added. The baseline VNF transit time
contribution is around 300 μs.

4.2.1. Results with no congestion
This set of results evaluate the role of DL tuning due to the upstream

INT chain in absence of congestion. The traffic conditions are the same
of UC1 in order to allows fair comparison between the two use cases.
Transit traffic rate is set to 7000 packet/s, while LC and BE rates are set
to 1000 packet/s each. No congestion is configured. The tuning effect of
DL is shown in Fig. 22. Transit traffic latency is the lowest one (around
200 μs), due to the shortest path. BE traffic has a constant latency
of around 680 μs, higher than transit traffic due to the longest paths
14
including the VNF processing. The LC traffic latency is tuned by the
configuration of DL. In fact, LC is dropped when DL < 350 μs, meaning
that all packets exhibit accumulated latency always higher than 350 μs.
Then, intermediate shaping is performed by the sink switch for 350 μs
< DL < 700 μs. That is, the switch drops only the LC packets that do not
satisfy the DL condition. Drop rate passes from 99% at DL = 350 μs to
0.07% at DL = 650 μs with a shaping behavior of the latency from 550 μs
to 700 μs. The behavior shows a very good accordance between the DL
configuration and the average obtained packet latency values. Some
latency offset is present due to the measurement setup: traffic analyzer
measures the e2e latency between the interfaces of the generator,
including the interfaces transmission time and the propagation time of
each link, while the DL threshold considers only the hop latency of the
source switch and the switch+VNF segment. It is worth to note that
all the latency contributions not considered in the DL threshold are
constant (interface transmission time, link propagation time) and may
be computed in advance and added to the DL threshold budget. The
same considerations are applicable to the PL parameter in the case of
congestion.

Table 2 show the comparison, in terms of average end-to-end la-
tency of the three traffic flows in steady state conditions, i.e. in absence
of congestion and VNF delay, measured in both UC1 and UC2 sce-
nario. The results show that UC2 code increases the average latency



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 22. UC2 without congestion: End-to-end latency and traffic shaping results as a function of DL tuning.
Table 2
End-to-end latency results: steady state.

Traffic flow UC1 end-to-end latency (μs) UC2 end-to-end latency (μs)

Overall LC 433 664
LC - VNF 133 364
Overall BE 379 557
BE - VNF 79 257
Transit 70 187

of the switch. Subtracting the VNF processing contribution, the UC2
code impacts increasing the latency of a factor 3. This is mainly due
to the additional source switch and to the increased complexity of
INT processing. This is demonstrated by the baseline results of the
transit traffic, subject to a latency increase rate of 2.6. The obtained
results demonstrate that the latency control contribution to P4 pro-
cessing is kept limited even with respect to INT processing, confirming
the lightweight burden introduced by latency control functions. With
respect to the same traffic route experienced by packets without consid-
ering the VNF delay, UC1 LC code introduces additional 54 μs (i.e., 27 μs
average at each switch transit), while UC2 LC code introduces addi-
tional 107 μs (i.e., 35 μs average at each switch transit). Therefore,
the impact of the additional P4 code processing is limited with the
assumption that the latency control granularity is in the order of few
milliseconds.

4.2.2. Results with congestion
The results of Fig. 23 show the behavior of the observed maximum

packet latency as a function of the configured DL = PL in the case of
switch congestion, evaluated in the same conditions evaluated for UC1.
In this case the maximum evaluated end-to-end latency is measured
by the traffic analyzer as a single packet latency occurrence evaluated
in the measurement set obtained by evaluating the behavior of 100
million of transmitted frames. The behavior confirms that the tune of
DL allows a shaping of delayed packets in a reasonably accordance with
the imposed DL threshold.

4.3. Applicability to hardware programmable platforms

The results reported in the previous subsections are related to BMv2
software switch and to traffic loads in the order of tens of Mb/s.
Results show that the impact of latency control with respect to standard
forwarding is limited, scalable in terms of flow entries and effective in
terms of LC latency control, either in static and dynamic conditions.
However, the proposed mechanism is conceived to be applicable in
P4 switches featuring hardware programmability and sustaining line
15
rate interface throughput (e.g., 100 Gb/s and more). A discussion is
hereafter needed to justify the adoption of such workflows on these
innovative platforms.

The key P4 capabilities needed to run LC workflows are the con-
ditional pipeline execution, the extra header processing (in UC2), the
queueing metadata support and the availability of stateful registers.
Most of the currently available hardware programmable switches sup-
port such capabilities. The key applicability constraint relies on the
dimension of the mobile window timestamp registers.

The Intel Tofino has the capability to program the P4 logic in the
ASIC utilizing up to 12 Match Action Units (MAU) for the ingress
and egress pipelines. Each MAU has the availability of Shadow Ran-
dom Access Memory (SRAM), Ternary Content Addressable Memory
(TCAM), Hash, Arithmetic Logical Units (ALU) and stateful ALUs [39–
41]. Thanks to the flexible pipeline design, flow tables of the different
pipelines may be split in different MAU, thus the dimension of each
flow table does not impact significantly in the architecture. The only
scalability issue may be represented by the dimension of the registers
storing packet timestamps. In the proposed P4 implementation, two
arrays of registers are used to store 𝑡1 and 𝑡2 timestamps. Further code
optimization may be considered by deleting the 𝑡2 register without
significant performance issues. Assuming a 48-bit long timestamp (as
implemented in BMv2) and a 100 Gb/s line rate interface with 10%
total LC traffic (i.e., 10 Gb/s) with an average packet length of 500
byte and an upper bound VNF latency of 20 ms, the minimum register
array memory size preventing packet timestamp overloading is around
the 2% of the overall SRAM and TCAM resources available in the switch
dataplane. This means that a switch has sufficient memory resources to
instantiate the registers properly and provide latency control of a large
set of LC flows with an aggregate 10 Gb/s load.

5. Conclusions

In this paper we proposed the adoption of P4-based data plane
programmability to control the latency of Service Chained flows at
the network switches in both intra- and inter-data center service de-
ployment. A detailed set of policy algorithms and P4 codes have been
presented in order to guarantee proactive actions at the switches, such
as priority change and drop, on a per-packet fashion when flows related
to the same service chaining crossing the same switch multiple times.
The proposed methods were applied in both a stand-alone switch sce-
nario and a switch domain supporting in-band telemetry capabilities.
Extensive results over a network testbed deploying BMv2 switches
were reported, showing that the presented mechanisms assure a fine
per-packet end-to-end latency control at the millisecond granularity
with good scalability margins in terms of admitted forwarding flow



Computer Networks 216 (2022) 109227F. Paolucci et al.
Fig. 23. UC2 with congestion: maximum end-to-end latency as a function of DL and PL tuning.
entries. Moreover, the impact of the latency control operation in terms
of introduced intra-switch latency is kept limited, below 40 μs, with
respect to the working switch latency values. The applicability of such
methods have been analyzed for hardware bare metal switches such
as the Tofino platform, showing that the amount of required resources
in terms of pipelines and memory are more than sufficient to enable
wirespeed transmission at line rate interface for a significant fraction
of latency-controlled service chained traffic.

CRediT authorship contribution statement

Francesco Paolucci: Conceptualization, Methodology, Investiga-
tion, Visualization, Validation, Writing – original draft, Writing – re-
view & editing. Davide Scano: Software, Validation. Piero Castoldi:
Conceptualization, Supervision. Emiliano De Paoli: Conceptualization,
Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Francesco Paolucci: reviewers with affiliation to CNIT and Scuola
Superiore Sant’Anna.

Davide Scano: reviewers with affiliation to CNIT and Scuola Superiore
Sant’Anna.

Piero Castoldi: reviewers with affiliation to CNIT and Scuola Superiore
Sant’Anna.

Emiliano De Paoli: reviewers with affiliation to MBDA, Leonardo, BAE
Systems, Airbus.

Data availability

The authors do not have permission to share data.

References

[1] L. Cui, F.P. Tso, W. Jia, Federated service chaining: Architecture and challenges,
IEEE Commun. Mag. 58 (3) (2020) 47–53, http://dx.doi.org/10.1109/MCOM.
001.1900627.

[2] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, P. Demeester, VNF perfor-
mance modelling: From stand-alone to chained topologies, Comput. Netw. 181
(2020) 107428, http://dx.doi.org/10.1016/j.comnet.2020.107428, URL https://
www.sciencedirect.com/science/article/pii/S1389128620311178.

[3] H. Hantouti, N. Benamar, T. Taleb, Service function chaining in 5G amp;
beyond networks: Challenges and open research issues, IEEE Netw. 34 (4) (2020)
320–327, http://dx.doi.org/10.1109/MNET.001.1900554.
16
[4] A.A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines, 5G network slicing using SDN
and NFV: A survey of taxonomy, architectures and future challenges, Comput.
Netw. 167 (2020) 106984, http://dx.doi.org/10.1016/j.comnet.2019.106984,
URL https://www.sciencedirect.com/science/article/pii/S1389128619304773.

[5] K. Kaur, V. Mangat, K. Kumar, A comprehensive survey of service function
chain provisioning approaches in SDN and NFV architecture, Comp. Sci. Rev.
38 (2020) 100298, http://dx.doi.org/10.1016/j.cosrev.2020.100298, URL https:
//www.sciencedirect.com/science/article/pii/S1574013720303981.

[6] P. Zheng, W. Feng, A. Narayanan, Z.-L. Zhang, NFV performance profiling on
multi-core servers, in: 2020 IFIP Networking Conference (Networking), 2020, pp.
91–99.

[7] R. Kawashima, H. Nakayama, T. Hayashi, H. Matsuo, Evaluation of forwarding
efficiency in NFV-nodes toward predictable service chain performance, IEEE
Trans. Netw. Serv. Manag. 14 (4) (2017) 920–933, http://dx.doi.org/10.1109/
TNSM.2017.2734560.

[8] M. Faltelli, G. Belocchi, F. Quaglia, S. Pontarelli, G. Bianchi, Metronome:
Adaptive and precise intermittent packet retrieval in DPDK, in: Proceedings of
the 16th International Conference on Emerging Networking EXperiments and
Technologies, in: CoNEXT ’20, Association for Computing Machinery, New York,
NY, USA, 2020, pp. 406–420, http://dx.doi.org/10.1145/3386367.3432730.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: Programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3) (2014)
87–95, http://dx.doi.org/10.1145/2656877.2656890.

[10] P4: https://p4.org.
[11] S. Han, S. Jang, H. Choi, H. Lee, S. Pack, Virtualization in programmable data

plane: A survey and open challenges, IEEE Open J. Commun. Soc. 1 (2020)
527–534, http://dx.doi.org/10.1109/OJCOMS.2020.2990182.

[12] E.F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on P4 pro-
grammable data plane switches: Taxonomy, applications, challenges, and future
trends, IEEE Access 9 (2021) 87094–87155, http://dx.doi.org/10.1109/ACCESS.
2021.3086704.

[13] F. Paolucci, F. Cugini, P. Castoldi, T. Osiński, Enhancing 5G SDN/NFV edge
with P4 data plane programmability, IEEE Netw. 35 (3) (2021) 154–160, http:
//dx.doi.org/10.1109/MNET.021.1900599.

[14] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, P. Castoldi, P4
edge node enabling stateful traffic engineering and cyber security, IEEE/OSA J.
Opt. Commun. Networking 11 (1) (2019) A84–A95.

[15] F. Musumeci, A. Fidanci, F. Paolucci, F. Cugini, M. Tornatore, Machine-learning-
enabled DDoS attacks detection in P4 programmable networks, J. Netw. Syst.
Manage. 30 (21) (2022) early–access, http://dx.doi.org/10.1007/s10922-021-
09633-5.

[16] Behavioral Model version 2: https://github.com/p4lang/behavioral-model.
[17] F. Cugini, P. Gunning, F. Paolucci, P. Castoldi, A. Lord, P4 in-band telemetry

(INT) for latency-aware VNF in metro networks, in: Optical Fiber Communication
Conference (OFC) 2019, Optical Society of America, 2019, p. M3Z.6, http://dx.
doi.org/10.1364/OFC.2019.M3Z.6, URL http://www.osapublishing.org/abstract.
cfm?URI=OFC-2019-M3Z.6.

[18] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner, R.
Bifulco, M. Jarschel, G. Bianchi, Survey of performance acceleration techniques
for network function virtualization, Proc. IEEE 107 (4) (2019) 746–764, http:
//dx.doi.org/10.1109/JPROC.2019.2896848.

[19] A. Leivadeas, M. Falkner, N. Pitaev, Analyzing service chaining of virtualized
network functions with SR-IOV, in: 2020 IEEE 21st International Conference
on High Performance Switching and Routing (HPSR), 2020, pp. 1–6, http:
//dx.doi.org/10.1109/HPSR48589.2020.9098975.

http://dx.doi.org/10.1109/MCOM.001.1900627
http://dx.doi.org/10.1109/MCOM.001.1900627
http://dx.doi.org/10.1109/MCOM.001.1900627
http://dx.doi.org/10.1016/j.comnet.2020.107428
https://www.sciencedirect.com/science/article/pii/S1389128620311178
https://www.sciencedirect.com/science/article/pii/S1389128620311178
https://www.sciencedirect.com/science/article/pii/S1389128620311178
http://dx.doi.org/10.1109/MNET.001.1900554
http://dx.doi.org/10.1016/j.comnet.2019.106984
https://www.sciencedirect.com/science/article/pii/S1389128619304773
http://dx.doi.org/10.1016/j.cosrev.2020.100298
https://www.sciencedirect.com/science/article/pii/S1574013720303981
https://www.sciencedirect.com/science/article/pii/S1574013720303981
https://www.sciencedirect.com/science/article/pii/S1574013720303981
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb6
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb6
http://dx.doi.org/10.1109/TNSM.2017.2734560
http://dx.doi.org/10.1109/TNSM.2017.2734560
http://dx.doi.org/10.1109/TNSM.2017.2734560
http://dx.doi.org/10.1145/3386367.3432730
http://dx.doi.org/10.1145/2656877.2656890
https://p4.org
http://dx.doi.org/10.1109/OJCOMS.2020.2990182
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/ACCESS.2021.3086704
http://dx.doi.org/10.1109/MNET.021.1900599
http://dx.doi.org/10.1109/MNET.021.1900599
http://dx.doi.org/10.1109/MNET.021.1900599
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb14
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb14
http://dx.doi.org/10.1007/s10922-021-09633-5
http://dx.doi.org/10.1007/s10922-021-09633-5
http://dx.doi.org/10.1007/s10922-021-09633-5
https://github.com/p4lang/behavioral-model
http://dx.doi.org/10.1364/OFC.2019.M3Z.6
http://dx.doi.org/10.1364/OFC.2019.M3Z.6
http://dx.doi.org/10.1364/OFC.2019.M3Z.6
http://www.osapublishing.org/abstract.cfm?URI=OFC-2019-M3Z.6
http://www.osapublishing.org/abstract.cfm?URI=OFC-2019-M3Z.6
http://www.osapublishing.org/abstract.cfm?URI=OFC-2019-M3Z.6
http://dx.doi.org/10.1109/JPROC.2019.2896848
http://dx.doi.org/10.1109/JPROC.2019.2896848
http://dx.doi.org/10.1109/JPROC.2019.2896848
http://dx.doi.org/10.1109/HPSR48589.2020.9098975
http://dx.doi.org/10.1109/HPSR48589.2020.9098975
http://dx.doi.org/10.1109/HPSR48589.2020.9098975


Computer Networks 216 (2022) 109227F. Paolucci et al.
[20] A. Ben Hamed, A. Leivadeas, M. Falkner, N. Pitaev, VNF chaining performance
characterization under multi-feature and oversubscription using SR-IOV, Infor-
matics 7 (3) (2020) http://dx.doi.org/10.3390/informatics7030033, URL https:
//www.mdpi.com/2227-9709/7/3/33.

[21] M.S. Castanho, C.K. Dominicini, M. Martinello, M.A.M. Vieira, Chaining-box: A
transparent service function chaining architecture leveraging BPF, IEEE Trans.
Netw. Serv. Manag. 19 (1) (2022) 497–509, http://dx.doi.org/10.1109/TNSM.
2021.3122135.

[22] C.K. Dominicini, G.L. Vassoler, R. Valentim, R.S. Villaca, M.R. Ribeiro, M.
Martinello, E. Zambon, KeySFC: Traffic steering using strict source routing
for dynamic and efficient network orchestration, Comput. Netw. 167 (2020)
106975, http://dx.doi.org/10.1016/j.comnet.2019.106975, URL https://www.
sciencedirect.com/science/article/pii/S138912861930194X.

[23] C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu, NFP: Enabling network function parallelism
in NFV, in: Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, in: SIGCOMM ’17, Association for Computing Machinery,
New York, NY, USA, 2017, pp. 43–56, http://dx.doi.org/10.1145/3098822.
3098826.

[24] D. Zhang, X. Chen, Q. Huang, X. Hong, C. Wu, H. Zhou, Y. Yang, H. Liu, Y. Chen,
P4SC: A high performance and flexible framework for service function chain,
IEEE Access 7 (2019) 160982–160997, http://dx.doi.org/10.1109/ACCESS.2019.
2950446.

[25] D. Wu, A. Chen, T.S.E. Ng, G. Wang, H. Wang, Accelerated service chaining on
a single switch ASIC, in: Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, in: HotNets ’19, Association for Computing Machinery, New York,
NY, USA, 2019, pp. 141–149, http://dx.doi.org/10.1145/3365609.3365849.

[26] F. Civerchia, A. Sgambelluri, F. Paolucci, L. Maggiani, P. Castoldi, F. Cugini,
Hardware acceleration for processing function virtualization, in: Proceedings
of the IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), IEEE, 2021.

[27] J. Ma, S. Xie, J. Zhao, Flexible offloading of service function chains to
programmable switches, IEEE Trans. Serv. Comput. (2022) 1, http://dx.doi.org/
10.1109/TSC.2022.3162701.

[28] A. Stockmayer, S. Hinselmann, M. Häberle, M. Menth, Service function chaining
based on segment routing using P4 and SR-IOV (P4-SFC), in: H. Jagode, H.
Anzt, G. Juckeland, H. Ltaief (Eds.), High Performance Computing, Springer
International Publishing, Cham, 2020, pp. 297–309.

[29] D.R. Mafioletti, C.K. Dominicini, M. Martinello, M.R.N. Ribeiro, R.d.S. Villaça,
PIaFFE: A place-as-you-go in-network framework for flexible embedding of VNFs,
in: ICC 2020 - 2020 IEEE International Conference on Communications (ICC),
2020, pp. 1–6, http://dx.doi.org/10.1109/ICC40277.2020.9149240.

[30] J. Lee, H. Ko, H. Lee, S. Pack, Flow-aware service function embedding algorithm
in programmable data plane, IEEE Access 9 (2021) 6113–6121, http://dx.doi.
org/10.1109/ACCESS.2020.3048421.

[31] D. Scano, F. Paolucci, K. Kondepu, A. Sgambelluri, L. Valcarenghi, F. Cugini,
Extending P4 in-band telemetry to user equipment for latency- and localization-
aware autonomous networking with AI forecasting, J. Opt. Commun. Netw.
13 (9) (2021) D103–D114, http://dx.doi.org/10.1364/JOCN.425891, URL http:
//opg.optica.org/jocn/abstract.cfm?URI=jocn-13-9-D103.

[32] I. Pelle, F. Paolucci, B. Sonkoly, F. Cugini, Latency-sensitive edge/cloud serverless
dynamic deployment over telemetry-based packet-optical network, IEEE J. Sel.
Areas Commun. 39 (9) (2021) 2849–2863, http://dx.doi.org/10.1109/JSAC.
2021.3064655.

[33] D. Cho, J. Taheri, A.Y. Zomaya, L. Wang, Virtual network function placement:
Towards minimizing network latency and lead time, in: 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2017, pp.
90–97, http://dx.doi.org/10.1109/CloudCom.2017.12.

[34] G. Sallam, G.R. Gupta, B. Li, B. Ji, Shortest path and maximum flow problems
under service function chaining constraints, in: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 2132–2140, http://dx.doi.
org/10.1109/INFOCOM.2018.8485996.

[35] Y. Wang, C.-K. Huang, S.-H. Shen, G.-M. Chiu, Adaptive placement and rout-
ing for service function chains with service deadlines, IEEE Trans. Netw.
Serv. Manag. 18 (3) (2021) 3021–3036, http://dx.doi.org/10.1109/TNSM.2021.
3086977.

[36] T. Mitra, J. Teich, L. Thiele, Time-critical systems design: A survey, IEEE Des.
Test 35 (2) (2018) 8–26, http://dx.doi.org/10.1109/MDAT.2018.2794204.

[37] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.
Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, P. Stenström, The worst-case execution-time problem—Overview
of methods and survey of tools, ACM Trans. Embed. Comput. Syst. 7 (3) (2008)
http://dx.doi.org/10.1145/1347375.1347389.

[38] In-band Network Telemetry Specifications v.2.1. https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf.
17
[39] P4_16 for Intel Tofino using Intel P4 Studio: https://opennetworking.org/wp-
content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf.

[40] N. Budhdev, R. Joshi, P.G. Kannan, M.C. Chan, T. Mitra, FSA: Fronthaul slicing
architecture for 5G using dataplane programmable switches, in: Proceedings of
the 27th Annual International Conference on Mobile Computing and Networking,
in: MobiCom ’21, Association for Computing Machinery, New York, NY, USA,
2021, pp. 723–735, http://dx.doi.org/10.1145/3447993.3483247.

[41] SD Fabric TNA: https://github.com/stratum/fabric-tna.

Francesco Paolucci (M) received the Laurea degree in
telecommunications engineering from the University of Pisa
in 2002, and the Ph.D. degree from Scuola Superiore
Sant’Anna, Pisa, in 2009. In 2008 he was granted a
research Merit Scholarship at the Istitut National de le
Recherche Scientifique (INRS), Montreal, Quebec, Canada.
Currently, he is Senior Researcher at CNIT, Pisa Italy.
His main research interests are in the field of network
control plane, orchestration for edge/cloud platforms, traf-
fic engineering, network disaggregation, advanced network
telemetry, SDN/P4 data plane programmability. He has been
involved in many European research projects on next gener-
ation control networking (E-Photon/ONe+, BONE, NOBEL,
STRONGEST, IDEALIST, PACE, 5GEx, 5GTRANSFORMER,
METROHAUL, 5Growth, BRAINE). He is co-author of 2
IETF Internet Drafts, more than 170 publications in interna-
tional journals, conference proceedings and book chapters,
and filed 4 international patents. He is Associate Editor
of the IEEE/OSA Journal of Optical Communications and
Networking (JOCN).

Davide Scano received his B.S. in telecommunication en-
gineering from the University of Pisa (2017) and his M.S
in computer science and networking from the University of
Pisa and Scuola Superiore Sant’Anna (2019), discussing a
research thesis on software defined networking for guar-
antee QoS in network slicing. In 2020 he got a Research
Scholarship at Scuola Superiore Sant’Anna, Pisa. Currently,
he is Ph.D. student at Scuola Superiore Sant’Anna. His
research interests are software defined networking, network
slicing, optical networks.

Piero Castoldi is a Full Professor and leader of the ‘‘Net-
works and Services’’ research area at the TeCIP Institute
of Scuola Superiore Sant’Anna, Pisa, Italy. He has been
involved with various responsibilities in several national and
EU FP7 and H2020 projects and he has managed several
corporate-sponsored projects with the italian Railway In-
frastructure Company, Ericsson, Telecom Italia. He is the
Director of the Erasmus Mundus Master on Photonic Inte-
grated Circuits, Sensors and Networks (PIXNET). His most
recent research interests lie in the areas of optical network
architectures, interconnection networks for Data Centers,
networks for industrial applications, 5G networking. He is
author of more than 400 technical papers published in inter-
national journals and international conference proceedings.
He has also filed more than 20 patents and he has authored
a book on multiuser detection for CDMA mobile terminals
published by Artech House.

Emiliano De Paoli is CyberSecurity Technical Expert at
MBDA Italy. In the Engineering department of the Company,
he is leading the Research and Development national team
for cybersecurity and communications domains. He follows
collaborations with universities, research centers and SMEs.

http://dx.doi.org/10.3390/informatics7030033
https://www.mdpi.com/2227-9709/7/3/33
https://www.mdpi.com/2227-9709/7/3/33
https://www.mdpi.com/2227-9709/7/3/33
http://dx.doi.org/10.1109/TNSM.2021.3122135
http://dx.doi.org/10.1109/TNSM.2021.3122135
http://dx.doi.org/10.1109/TNSM.2021.3122135
http://dx.doi.org/10.1016/j.comnet.2019.106975
https://www.sciencedirect.com/science/article/pii/S138912861930194X
https://www.sciencedirect.com/science/article/pii/S138912861930194X
https://www.sciencedirect.com/science/article/pii/S138912861930194X
http://dx.doi.org/10.1145/3098822.3098826
http://dx.doi.org/10.1145/3098822.3098826
http://dx.doi.org/10.1145/3098822.3098826
http://dx.doi.org/10.1109/ACCESS.2019.2950446
http://dx.doi.org/10.1109/ACCESS.2019.2950446
http://dx.doi.org/10.1109/ACCESS.2019.2950446
http://dx.doi.org/10.1145/3365609.3365849
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb26
http://dx.doi.org/10.1109/TSC.2022.3162701
http://dx.doi.org/10.1109/TSC.2022.3162701
http://dx.doi.org/10.1109/TSC.2022.3162701
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://refhub.elsevier.com/S1389-1286(22)00308-5/sb28
http://dx.doi.org/10.1109/ICC40277.2020.9149240
http://dx.doi.org/10.1109/ACCESS.2020.3048421
http://dx.doi.org/10.1109/ACCESS.2020.3048421
http://dx.doi.org/10.1109/ACCESS.2020.3048421
http://dx.doi.org/10.1364/JOCN.425891
http://opg.optica.org/jocn/abstract.cfm?URI=jocn-13-9-D103
http://opg.optica.org/jocn/abstract.cfm?URI=jocn-13-9-D103
http://opg.optica.org/jocn/abstract.cfm?URI=jocn-13-9-D103
http://dx.doi.org/10.1109/JSAC.2021.3064655
http://dx.doi.org/10.1109/JSAC.2021.3064655
http://dx.doi.org/10.1109/JSAC.2021.3064655
http://dx.doi.org/10.1109/CloudCom.2017.12
http://dx.doi.org/10.1109/INFOCOM.2018.8485996
http://dx.doi.org/10.1109/INFOCOM.2018.8485996
http://dx.doi.org/10.1109/INFOCOM.2018.8485996
http://dx.doi.org/10.1109/TNSM.2021.3086977
http://dx.doi.org/10.1109/TNSM.2021.3086977
http://dx.doi.org/10.1109/TNSM.2021.3086977
http://dx.doi.org/10.1109/MDAT.2018.2794204
http://dx.doi.org/10.1145/1347375.1347389
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
http://dx.doi.org/10.1145/3447993.3483247
https://github.com/stratum/fabric-tna

	Latency control in service chaining using P4-based data plane programmability
	Introduction
	P4 and service chaining latency: current issues
	Related work on Service Chaining and Data Plane Programmability 
	Service chaining scenario and objective

	P4 latency control solutions
	UC1: Stand-alone P4 switch
	Problem description and assumptions
	Latency control and policies
	P4 implementation

	UC2: Multi-switch latency control using INT
	P4 implementation


	Experimental evaluation
	UC1 setup and results
	Switch throughput, end-to-end latency and scalability
	Dynamic behavior in case of congestion
	Impact of PL and DL tuning

	UC2 setup and results
	Results with no congestion
	Results with congestion

	Applicability to hardware programmable platforms

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


