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Abstract— Nowadays, robot assisted surgery training relies
more and more on computer-based simulation. However, the
application of such training technologies is still limited to the
early stages of practical training. To broaden the usefulness
of simulators, multi-sensory feedback augmentation has been
recently investigated. This study aims at combining initial
predictive (guidance) and subsequent error-based (feedback)
training augmentation in the visual and haptic domain. 32
participants performed 30 repetitions of a virtual reality task
resembling needle-driving by using the surgeon console of the
da Vinci Research Kit. These trainees were randomly and
equally divided into four groups: one group had no training
augmentation, while the other groups underwent visual, haptic
and visuo-haptic augmentation, respectively. Results showed a
significant improvement, initially introduced by guidance, in
the task completion capabilities of all the experimental groups
against control. In terms of accuracy, the experimental groups
outperformed the control group at the end of training. Specifi-
cally, visual guidance and haptic feedback played a significant
role in error reduction. Further investigations on long term
learning could better delineate the optimal combination of
guidance and feedback in these sensory domains.

I. INTRODUCTION
A. Robot Assisted Surgery

Since their early introduction in medicine, robots have
gradually started to become ubiquitous in rehabilitation and
several surgical fields [1].

Robot-Assisted Minimally Invasive Surgery (RAMIS) is
an example of how the clinical advantages of laparoscopy
have been integrated with the technical improvements intro-
duced by robotics. The da Vinci Surgical System (by Intuitive
Surgical Inc., Sunnyvale, CA) is currently the most popular
surgical robot in RAMIS. It is a teleoperated system where
the surgeon manipulates a couple of robotic masters while
seating at a console located away from the patient.

Despite the upgrades introduced by such a robotic archi-
tecture, the complexity of surgery as a sensorimotor task,
together with the need for learning how to deal with these
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new control modalities [2], imply the distinct need for
efficient training in robotic surgery [3].

B. Surgical Simulation and Training

In the last decades, simulation-based education has come
to the forefront for the development of the practical surgical
skills [4]. As of today, the vast majority of departments of
surgery delivers simulation-based training to their trainees on
daily basis [5]. Simulators for RAMIS training range from
inanimate box trainers and manikins, to virtual reality (VR)
platforms. These latter have been proven to enhance skill
learning [6]. However, the use of such VR training seems
to be limited to surgical residents and specific to the early
stages of the training curricula [7].

To push forward the adoption of training simulators across
different surgical fields and proficiency levels, various types
of feedback augmentation have been attempted and tested
[8].

Moreover, virtual environments open the appealing oppor-
tunity to recreate a variety of different settings which can be
easily modified in real-time, as well as to extract an ample
amount of simulation parameters and metrics. Together with
the exploitation of these advantages to perform quantitative
performance assessment [9], augmented feedback represents
a further application of these available data to enhance motor
learning.

C. Augmented Feedback

Feedback has been long recognized as a central component
for the education, motivation and support of the trainee
towards proficiency [10]. It is in fact thought to have a
guiding role when used by the learner to produce more
accurate performance on subsequent trials [11].

Augmented feedback, or extrinsic feedback, specifically
refers to a piece of information that cannot be elaborated
without an external source, and which is provided to the
trainee by a trainer or a display [12]. The word display
does not refer only to visual devices but in general to any
feedback interface in multiple sensory domains. Computer-
based VR platforms allow to perform this elaboration by
taking as an input the simulation parameters and metrics,
as well as they offer the possibility to visually display the
resulting augmented feedback in the simulation environment.

Moreover, the combination of robotics with simulation as
in robotic surgery simulation-based training further increases



the amount of available data (e.g. robot kinematics and
dynamics) and the way to display feedback. In fact, robots
can be regarded as haptic displays.

This study fits into the context of simulation-based training
for robotic surgery with the aim of optimizing augmentation
by exploiting intrinsic properties of simulation and robotics
to address multiple sensory domains.

II. RELATED WORK
A. Augmentations in Motor Learning

Before addressing the literature related to augmentation
in multiple sensory domains, it is useful to define also the
concept of guidance which is strictly related to motor learn-
ing, training, and augmentation. According to [13], guidance
can be described as any kind of physical or verbal assistance
to prevent the user from committing methodological and/or
large amplitude errors. In the following sections, we will
refer to guidance or assistance with the specific meaning
of active (or predictive) methods for sensory augmentation.
On the other side, feedback will be regarded as the sensory
augmentation which is exclusive consequence of the user’s
action (e.g. their error).

According to Zhu et al., the choice of the type of augmen-
tation should be related to the task [14]. Visual augmentation
is mainly connected to hand-eye coordination, context aware-
ness, depth perception, or methodology; haptic augmentation
is mainly involved in force learning, manipulation, and tactile
discrimination; the auditory augmentation is mostly linked to
strongly time-related and repetitive movements.

B. Visual Augmentation

Visual feedback was initially investigated in rehabilita-
tion. It was demonstrated that visual cues might help in
maintaining a predetermined trajectory by making corrective
adjustments whenever the feedback indicates a deviation
from the desired path. This can help, for example, during
the traditional arm reaching movements [15].

Several studies also applied visual feedback in surgical
training to investigate its impact over performance. Reiley et
al. displayed haptic interaction forces as graphical overlays
on the master console of a da Vinci surgical system [16];
similarly, Judkins et al. implemented an Augmented Reality
environment by introducing visual cues in laparoscopic im-
ages to inform the subject in real-time about the magnitude of
the exerted gripping forces [17]. In both cases, the developed
visual force feedback improved the performance on trainees.
Simulators such as the da Vinci Skill Simulator (dVSS)
mostly integrate basic forms of visual guidance to teach how
to control the robotic platform or to perform simple object
manipulation [18].

Malpani et al. developed an advanced virtual coaching
framework able to deliver real-time visual augmentation
during suture on the dVSS; the visual overlays aimed at
providing both guidance and feedback throughout the most
challenging phases of the suturing task. Even though the
visual cues were mostly found as intuitive, the overall

performance did not improve significantly possibly due to
inefficacy of the user study design [19].

C. Haptic Augmentation

Haptic augmentation has proven to be effective in many
surgery-related training experiments; it is thought to improve
fidelity, realism, and training efficacy [20] especially for
novices or resident surgeons [21].

Shahbazi et al. proposed an Expert In the Loop (EIL)
system to incorporate direct haptic guidance (also referred to
as virtual fixture or active constraint) on da Vinci training.
Their argument was that, in teleoperated systems, visual
guidance might not be as effective as haptic guidance since
it only shows where or how to move the robotic tool tip, but
not how to generate such a movement through the master
manipulator [22].

Furthermore, Enayati et al. modulated haptic assistance on
a VR training task using the da Vinci Research Kit (dVRK
[23]) according to the trainee’s performance. Results showed
promising outcomes in terms of faster task completion time
[24]. This is a well known concept in rehabilitation (usually
referred to as guidance hypothesis), where the amount of
assistance is consequently mostly delivered “as needed”.
Nevertheless, the benefits of haptic guidance for skill learn-
ing and retention is still debated and different studies agree
that this modality can considerably alter the dynamic of the
task and even impede motor learning [25] [26].

Scheeler et al. found that haptic guidance is more suited
for improving movement efficiency, while haptic feedback
for improving its effectiveness; the authors suggest that the
two modalities can be additionally deployed on different
degrees of freedom [27].

Most of the RAMIS training experiments have been car-
ried out deploying alternative haptic feedback displays such
as wrist squeezing devices [28], voice coils [29], tactile
actuators [30], or mixed approaches [31] to render the
measured or simulated haptic clues. The dVRK is a well-
known research platform in robotic surgery that allows to
apply 6 DoF force-torque at its master manipulators [23]; this
study fits in this context together with other groups that have
been exploring the dVRK stability boundaries and capability
as haptic display for surgical simulation [22], [32], [33].

D. Auditory Augmentation

Auditory augmentation has proven to be particularly ef-
fective in optimizing cyclic movements since the human
auditory system is very sensitive in perceiving rhythms and
time-dependent variations; this could be the main reason why
it is more suited for sport training and rehabilitation than
surgery [34]. Surgeons and novices found, in fact, vibro-
tactile feedback more useful than auditory during da Vinci
dry lab training. Most of them also approved the combination
of the two modalities [35]. Caccianiga et al. jointly deployed
auditory and visual feedback in a RAMIS training scenario;
visual cues were used to boost accuracy while sound was
used to impose specific temporal constraints to task execution
without overloading the visual domain [36].



E. Mixed Sensory Augmentation

To the best of our knowledge, a direct comparison or opti-
mized fusion of the aforementioned augmentation modalities
has not been presented yet in the context of robot-assisted
surgical training; anyway, useful results can be extracted
from other research contexts.

For example, Yoon et al. found that haptic assistance
reduced task completion time and effort with respect to visual
assistance on a mobile robot driving task [37]. Marchal-
Crespo et al. used instead a tennis simulator to compare
visual and haptic domain; haptic guidance was found espe-
cially suitable for less-skilled subjects, while visual feedback
gave higher benefit to highly-skilled participants [38].

Sigrist et al. extensively tested a VR rowing simulator
over different feedback domains and the study revealed that
a well-designed concurrent (i.e., during the task) feedback
can lead to complex task learning, especially if the specific
advantages of each domain are properly employed [39]. The
same group found relevant results for the visual terminal (i.e.,
at the end of each task execution) feedback and visuo-haptic
concurrent feedback; the auditory domain was revealed as
unable to properly augment training on 3-dimensional move-
ments [12].

FE. Aim of this Work

In this work, a VR robotic teleoperated needle-driving
task was integrated with different augmentation modalities
both in the visual and haptic domain. Needle-driving was
chosen as it both exemplifies a surgery-related set of sub-
routines, and it is a complex motor learning bi-manual task
that engages together strategy and visuo-motor accuracy. To
optimize the augmentation of the presented task, subsequent
guidance and feedback were delivered during the same
training session. The rationale behind this novel approach
derives from the joint consideration that guidance tends to
prevent the learner from making procedural errors [40], and it
should be removed before becoming integral part of the task
[41]. On the other side, feedback can contribute to movement
refinement through error correction [13] only if the user has
previously acquired the correct procedural steps of the task.
Both these augmentation modalities can be provided to the
trainee in form of 3-dimensional visual cues or forces/torques
delivered at the robot master manipulators.

Then, a secondary goal of this study is comparing the
effectiveness of augmented guidance and feedback in dif-
ferent sensory domains (visual and haptics). As above men-
tioned, this comparison has been poorly investigated in robot-
assisted surgical training in a structured way.

III. MATERIALS AND METHODS

This section describes the user study that was carried out to
investigate the effects of the different training augmentations.
Firstly, the hardware and software employed in this work
are listed, together with an overview of the VR task; an
accurate description of the visual and haptic augmentations
follows. Finally, the acquisition protocol and details about the
evaluation metrics and their statistical analysis are reported.

MANIPULATOR

VISUAL
CUES

Fig. 1: The virtual END platform [36]. Three rings compose the
needle insertion/extraction trajectory at the centre of the scene. In
the image, the right manipulator holds the needle during insertion.
In the current picture, the task is in Visual Feedback mode: the
color coding and the position along each LED strip indicate the
intensity and directionality of ring displacements, respectively.

A. Experimental Setup

The robotic platform employed in this study was the
master console of the da Vinci Research Kit [23]. This
console includes a foot-pedal tray, an HD stereo viewer
and two 8DoF master manipulators, with only the first
7 joints actuated. The ATAR (Assisted Teleoperation with
Augmented Reality) framework [24] was employed to design
the virtual reality task, while the meshes of the virtual
objects were created with SolidWorks and Blender. The
simulation core runs at 60 Hz refreshing both the graphical
and physical rendering engines. A separate thread running
at 1kHz manages the generation of the forces and torques
necessary for the haptic augmentation and, contextually, the
bilateral communication with the dVRK.

B. Virtual Task

The virtual Enhanced Needle Driving (END) platform
[36] was used to simulate three of the sub-routines that
characterize in-vivo needle-driving: insertion, hand-to-hand
transfer, and extraction. At first, a needle is grasped by the
user with its dominant hand to be inserted in a series of
three rings collocated at 0, 45, and 90 degrees from the
horizontal plane (Fig. 1). Once correctly inserted, the needle
is transferred to the non-dominant hand to be temporarily
held in place. Finally, the dominant hand picks-up the needle
again (close to the tip) and performs the extraction. The three
rings are compliant to deviated trajectories of the needle and
their displacement is used to both generate the augmented
feedback and to evaluate the user’s accuracy performance.

C. Training Augmentations

Visual Guidance - The visual guidance was provided
by means of 3D graphic overlays opportunely positioned
in the scene to guide the subject during the different task
phases: needle pick-up, pre-rotation, insertion, transfer,
and extraction (Fig. 2). Three types of overlays were
implemented: a dynamic ghost gripper, showing the
correct grasping position and orientation, as well as the



Fig. 2: Visual Guidance: a) The gray translucent gripper represents the ghost gripper for needle pick up; b) The red dynamic Reference
frame indicates the current needle tail pose and has to be matched to the static yellow Reference frame for correct needle pre-rotation;
c) The gray translucent ghost gripper guides the user during transfer to the non-dominant hand; d) The gray translucent ghost gripper is
used for transfer to the dominant hand; e) The blue forus marks the ideal insertion and extraction trajectory. The green gripper in all the
sub-images represents the current pose of the manipulator tele-operated by the user.

jaws open/close timing during pick-up and transfer (Fig.
2a,c,d); a dynamic and a static reference frame to be
matched for univocal pre-rotation and positioning of the
needle at the entry point (Fig. 2b); and finally, a static
blue forus highlighting the ideal trajectory to guide the
user during insertion and extraction (Fig. 2e). The visual
overlays interactivity was managed through a kinematic
pose matching function that checks whether two specified
virtual objects (i.e. the user driven and the ghost grippers)
correctly overlap. The task complexity can be customized
by setting the matching tolerance over 6DoF; for this study
the tolerance was set at 1 cm for the translational DoFs
and 20° for the rotational DoFs. Reduced opacity was
opportunely set for the overlays to avoid visual occlusion.

Visual Feedback - The visual feedback was developed as
a multi directional real-time visual cue carrying information
about the displacement of the rings. In details, at each
time step the direction and the degree of deflection of
the shaft supporting each ring is mapped into a circular
LED strip located, co-axially, at the base of the shaft.
The resulting visual feedback (Fig.1) intuitively displays
intensity (color coding and number of LEDs turned on) and
direction (position on the LEDs turned on) of each ring
displacement. The user is therefore able to identify and
correct the trajectory deviations. More details can be found
at the original description of the END platform [36]. A
video of the implemented visual guidance and feedback can
be found in the attached media.

Haptic Guidance - For the development of the haptic
guidance, a desired pose for the virtual manipulator Tynan,d
was defined at each task phase. During the pick-up, transfer,
and pre-rotation phases, Tynan,da Was defined as static, and it
corresponded to the same poses used for the visual augmen-
tations (ghost grippers and reference frame) in Section III-
C. Throughout the insertion and extraction phases a specific
algorithm, similar to the work described by Coad et al. [25],
was used to define Tinan,q at each instant of time. The whole
insertion-extraction ideal path was discretized in 300 desired
needle tip poses Tiip 4. Such discrete trajectory, as a whole,
perfectly matches to the one highlighted by the visual blue
torus mentioned in Section III-C. At first, the algorithm

looks for the Tyip,q on the trajectory that is closest to the
current needle tip pose Tiip,c. Therefore, the chosen Tyip 4 is
multiplied for the current transformation between the needle
tip and the manipulator timem,c obtaining the desired
Tman,a- From here, the current and desired manipulator
poses Tman,c,a are used to calculate the appropriate force and
torque vectors to send to the dVRK masters. A simple visco-
elastic method was employed for the generation of forces and
torques:

fG = KtG * (tman,d - tman,c) - DtG * Uman,c (1)

tG - KS*("’man,d_rman,c) - Dg*wman,c (2)

where tman,d,e are vectors of x,y,z coordinates and
Tman,d,c are vectors of roll, pitch,yaw angles extracted
from Tman,d,c. Furthermore, ¥man,c and Wman, are the
manipulator current velocity and angular rate, while KET
and Dfr are translational and rotational elastic and viscosity
coefficients, respectively. The coefficient values, as well as
the maximum applied forces and torques are reported in
Table I. To avoid jumps or system instabilities, a ramp
function (€ 0,1) was applied to wrenches during the first
At (1 s) of guidance activation in each phase. Since the
opening/closure of the gripper is not actuated in the dVRK
platform, no haptic guidance nor feedback was provided to

the trainee in terms of grasping.

TABLE I: Haptic guidance parameters

K¢ K¢ D¢ D¢ i)

G
T max t

max

IO N/m 0.I5N/m 15Ns/m 00l Ns/m 4N 0.1 Nm

Haptic Feedback - A visco-elastic method was also used
for the haptic feedback. At any time instant, the reference
pose (at equilibrium) Tying, and current pose (when dis-
placed) Tying,c of each ring were compared; as a result,
three distance vectors d;, one for each ring, were computed.
The aim of the haptic feedback is that of delivering to the
user a clear and realistic feeling of the interaction with
the environment (in this case the needle-rings interactions).
Therefore, considering the complexity of estimating accu-
rately the cumulative torques resulting at the manipulator
from each directional component (d; ; , . of each d; applied
with a different torque arm) and the marginal gain that



such computation could have introduced [42], the model was
simplified to forces-only:

3
F F F
7= dix K — D xvmane 3)
i=1
where i spans the number of rings. The visco-elastic param-
eters used for the generation of the force vector f, as well as
the maximum applied values are reported in Table II.

TABLE II: Haptic feedback parameters

K{ D fhae

360 N/m 40 N.s/m 3N

D. Acquisition protocol

The user study involved 32 non-medical participants (from
21 to 35 years old, 19 males and 13 females). All the subjects
had none to little experience with teleoperated robots, where
little experience referred to the use of a tele-operated robot
just during demonstrations and not during past user studies.
They were randomly divided into 4 groups: a control group
(C) which did not receive any kind of guidance or feedback,
a visual group (V) which performed training with visual
guidance and feedback, a haptic group (H) which underwent
haptic guidance and feedback, and a visuo-haptic group (VH)
which had cues of both the sensory domains.

Each experimental session was comprised of three phases:
a baseline assessment (B, composed by 5 task repetitions),
a training stage (G and F, 10 repetitions each) and a fi-
nal evaluation (E, 5 repetitions). All the groups performed
the task with no guidance/feedback during baseline and
evaluation. Only the training stage differed among groups.
The control users had no cue. The training phase of the
other groups was split into two sub-stages: in the former
(G, 10 repetitions), each group experienced guidance of
the respective sensory domain (visual, haptic, or both); in
the latter (F, 10 repetitions), they received feedback of the
assigned sensory domain.

At the beginning of the experiment, the subjects were
introduced to the dVRK console. Each user (independently
from the allocation group) was shown a video with a correct
execution of the task and received a verbal explanation of
its salient steps. Moreover, all participants were made aware
that their performance would be evaluated in terms of ring
displacement minimization. The experiments were approved
by the ethical committee of Politecnico di Milano, and all the
subjects gave informed consent according to the declaration
of Helsinki.

E. Performance metrics and statistical analysis

The first metric, Task Completion, related to the capability
of the user to complete each task phase (needle insertion,
transfer, and extraction). For each task repetition, a binary
index stating the conclusion of each task phase was recorded.
The Task Completion of a certain user in a certain task
repetition is the sum of completed phases out of the total
number of phases (i.e., 3).

Secondly, the time-accuracy performance was addressed
by computing the Time to complete the task and the Mean
Ring Displacement during the task execution. The Mean Ring
Displacement is defined as the average of the sum of the
euclidean distances of the 3 rings from their resting positions
during the task [36].

Whenever the participant was not able to complete the
full task, the trial was considered as incomplete and Mean
Ring Displacement and Time data were ignored. A total
of 334 trials, corresponding to the 35% of the overall
time-accuracy data were discarded.

Considering this incomplete nature of the analyzed data
set, a Generalized Linear Mixed Model (GLMM) was chosen
as the most suitable fit for the repeated measures design
of the experiment. The model was set to take into account
for the interaction of the two independent variables (group
and stage) while subjects were treated as a random effect.
The three performance metrics evaluated in this work were
alternatively set in the GLMM as dependent variable. Given
that the resulting distribution of the dependent variables
was not normally distributed, a loglO transformation was
applied to each Time and Mean Ring Displacement data
point to restore normality of the models residuals. Data
fitting was done using Maximum Likelihood Estimation
(MLE). Multiple linear hypothesis testing was performed on
the GLMM using simultaneous t-tests with Satterthwaite’s
method; Bonferroni corrections were applied to account
for multiple comparisons in the data sets. All statistical
analyses were performed in R version 3.5.3.

IV. RESULTS AND DISCUSSION

This section reports the main outcomes in terms of effec-
tiveness of training augmentation (guidance and feedback),
as well as a comparison of sensory domains. This effective-
ness is addressed in terms of capability to complete the task
(Task Completion), as well as time-accuracy metrics (Mean
Ring Displacement) and Time). All the subjects enrolled
in the user study completed the acquisition protocol. The
duration of a single session ranged from 46 up to 72 minutes.

A. Task Completion

Despite the quality of execution, the basic objective of
learning a task is at least being able to complete it. In the VR
exercise under investigation, needle drop is the key source
of failure. Such a failure is likely to occur when the needle
is grasped or transferred from instrument to instrument in
sub-optimal ways. These procedural aspects can be complex
to take into account for novice trainees.

The introduction of guidance at the very beginning of
training has the primary goal of assisting the trainee through-
out the task procedural steps. The Task Completion Analysis
left box of Fig. 3 shows the percentage of task completion
of each group across the different training stages. The
baseline assessment (B) featured similar initial values among
the different experimental groups (p>0.05). When training
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Fig. 3: Graphical and statistical analysis of the Task Completion (left box), Mean Ring Displacement (central box) and Time (right box)
metrics. On the top, each vertical box features the graphical evolution of the metrics. Markers refer to the median across the users composing
each group, while the vertical bars in baseline and evaluation stand for data variability (25th and 75th percentiles). For each training slot
Task Completion was averaged across the 5 repetitions for each user, while all the available values of the Mean Ring Displacement and
Time were taken into account. On the bottom, each box shows the statistical analysis within groups across training stages (upper table)
and the statistical analysis across groups for each training stage (lower table).

started (G1), the capability of task completion featured a
steep jump in the groups undergoing augmented guidance
with respect to the control group. This initial improvement
in Task Completion was statistically significant across all the
experimental groups (p=0.002 for H and p<0.001 for V and
VH) and it resulted in a significant difference in G1 between
the control users and all the experimental subjects (p=0.004,
p=0.006, p=0.041 for V, H, and VH respectively).

As the training session continued, no further significant
improvement in Task Completion was denoted (p>0.05 for
all the groups and the training stages after G1). Specifically,
the application of feedback instead of guidance during F1
and F2 did not seem to have significant effects on Task
Completion. At the end of training (E), all the experimental
groups outperformed the control one ( p<0.001) and no
significant difference was present across the experimental
groups (p>0.05) at evaluation.

To summarize, the initial introduction of guidance caused
a steep improvement in Task Completion for the experimental
users. After this training stage (G1), the control users did not
manage to fill the gap with respect to the other experimental
groups. The sensory domain of the augmentations did not
have any influence in terms of Task Completion capabilities.

B. Mean Ring Displacement

Especially in delicate fields like surgery, accuracy has a re-
markable relevance. The Error Analysis central box of Fig. 3
depicts the evolution of Mean Ring Displacement across the
experimental session. All the groups featured similar starting
performance (p>0.5) in terms of accuracy at baseline (B).
From baseline (B) to evaluation (E), just the experimental
groups significantly improved their performance (p<0.001).
This error reduction resulted in significantly lower values
in the final Mean Ring Displacement of the experimental
subjects with respect to the control users (p=0.003, p=0.036,
p=0.037). Comparing the experimental groups at evaluation
(E), the Mean Ring Displacement of the visual group was
lower with respect to the haptics and visuo-haptics groups but
not in a statistically significant way (p>0.05). The analysis
of Mean Ring Displacement evolution during training might
provide additional insights to better understand these final
outcomes.

The initial research hypothesis of this study is that the
application of feedback is able to minimize the error while
performing the task. This was verified for the haptics and
visuo-haptics subjects who underwent a significant improve-
ment at the introduction of feedback (p<0.001 at G2vsF1).



Nevertheless, the visual group featured a different trend and
it showed the major improvement at the introduction of
guidance (p=0.034 at BvsGl). This could be explained by
the fact that the visual guidance augmentations intrinsically
contained accuracy information by showing the ideal trajec-
tory (for the needle insertion and extraction) that causes no
ring displacement.

Additionally, the lack of improvement during feedback
augmentation could be a consequence of the way visual
feedback was provided to the users: each ring was sur-
rounded by LED strips whose color coding and position
signaled intensity and directionality of ring displacements,
respectively. This way to provide feedback could be too
complex for the users to interpret, thus causing no further
improvement in accuracy.

Finally, the comparison between the final stage of feed-
back (F2) and the evaluation (E) could give some hints about
the eventual addiction of the users to the augmentations:
although the median error was higher in E with respect to F2,
such a deterioration was significant just for the visual-haptics
group (p=0.017 at F2vsE). This could be explained by the
simultaneous removal of a double source of augmentation
in the subjects previously undergoing both visual and haptic
feedback.

C. Time

The total time to complete the task was not a metric
the users were verbally thought to optimize, neither they
were provided feedback about. Anyway, its analysis could
highlight eventual relations between time and augmentations.
This analysis is reported in the Time Analysis right box of
Fig. 3. Firstly, all the groups showed similar performance
(p>0.05) both at baseline (B) and evaluation (E). At the same
time, no significant difference between B and E was found
in any group. This could lead to the conclusion that subjects
did not optimize the time to complete the task throughout
the training, as well as the augmentations did not help in
achieving any time improvement. The former consideration
can be related to the time-accuracy trade off: as previously
described while discussing the Mean Ring Displacement,
users improved their accuracy throughout the training and
this could have required higher time to complete the task.
As a consequence, any time improvement in terms of users’
confidence in carrying out the task could be counterbalanced
by additional time spent for error minimization at the end of
the experiment.

Anyway, some interesting considerations could be de-
rived by analysing the Time evolution within groups during
training. All the experimental subjects were characterized
by a relevant deterioration at the introduction of feedback
(p=0.042 for V and p<0.001 for H and VH at G2vsFl).
This could be related to the cognitive demand in initially
interpreting the feedback. Focusing on the haptics group,
it was subjected to a significant Time improvement at the
beginning of guidance (p=0.009 at BvsGl). This could be
linked to the application of forces that can speed up the task
execution by triggering movements and accelerating motion.

V. CONCLUSIONS

Virtual reality simulation and robotics (as visual and
haptic interfaces, respectively) open attractive opportunities
for training augmentation. This work focused on the integra-
tion of a virtual reality surgical task (needle driving) with
different augmentation modalities to optimize training. Such
augmentations were provided to the user as a sequential
combination of guidance (showing how to carry out the task)
and feedback (showing the concurrent error), and they were
implemented in the visual and haptic domain. A control
group (performing training without any augmentation) was
compared to three experimental groups (receiving training
augmentation in the visual, haptic and both the domains,
respectively).

All the subjects undergoing augmentations outperformed
the control group at the end of training in terms of task
completion and accuracy. More specifically, the presence of
guidance at the beginning of training played as determining
factor for all the experimental groups in terms of task com-
pletion, and additionally as a source of error reduction when
deployed in the visual domain. The subsequent application
of feedback did not cause a comparable further improvement
in task completion for any of the groups, while haptic and
visuo-haptic groups significantly reduced the error when
the concurrent feedback was applied. These results hint at
the potential for future experimentation in coupling visual
guidance and haptic feedback during subsequent training
stages to further optimize learning curves during RAMIS
training. No significant reduction was shown in terms of total
task execution time from pre to post training assessments, .

Despite demonstrating a distinct aid of training aug-
mentation, few significant differences were identified when
comparing sensory domains. This limitation could be related
to the short duration of training (single session), as well as
the lack of skill retention tests.

Further investigations will move in this direction by defin-
ing a longer study protocol, which includes multiple sessions
over different days. To address this purpose, the complexity
of the target task to learn should be increased (in order to
prevent early saturation of learning). This opens the possi-
bility to deal with more structured task of robotic surgery,
involving challenging cognitive loads due to decision making
and emergency response. The contribution of augmentation
in such situations could be an additional interesting insight
to address both from a sensory-motor and a psychological
point of view.

Additionally, shifting research from single gestures of
surgery (like needle driving) to full steps of surgical pro-
cedures can pave the way towards a full exploitation of
simulation-based training even after the very initial practical
skill development as in the current practise. Such an ideal
training platform enriched with multi-sensorial automated
coaching for guidance and feedback could optimize training
outcomes, decrease learning times, as well as cut costs
associated to mentoring.
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