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Abstract. We analyze the performance of the best-response dynamic across all normal-
form games using a random games approach. The playing sequence—the order in which
players update their actions—is essentially irrelevant in determining whether the dy-
namic converges to a Nash equilibrium in certain classes of games (e.g. in potential
games) but, when evaluated across all possible games, convergence to equilibrium de-
pends on the playing sequence in an extreme way. Our main asymptotic result shows
that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly
small fraction of all (large) games when players take turns according to a fixed cyclic
order. By contrast, when the playing sequence is random, the dynamic converges to a
pure Nash equilibrium if one exists in almost all (large) games.
JEL codes: C62, C72, C73, D83.
Keywords: Best-response dynamics, equilibrium convergence, random games.

1Faculty for Economics and Business Administration, Chemnitz University of Technology, Chemnitz,
Germany
2Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, Oxford, UK
3Oxford Martin Programme on Technological and Economic Change (OMPTEC), Oxford Martin School,
University of Oxford, Oxford, UK
4Department of Computer Science, University of Oxford, Oxford, UK
5Mathematical Institute, University of Oxford, Oxford, UK
6Institute of Economics and EMbeDS Department, Sant’Anna School of Advanced Studies, Pisa, Italy
7Department of Economics, University of Oxford, Oxford, UK
Email addresses: torsten.heinrich@wirtschaft.tu-chemnitz.de, yjluca98@gmail.com,
luca.mungo@maths.ox.ac.uk, marco.pangallo@santannapisa.it, scott@maths.ox.ac.uk,
bassel.tarbush@economics.ox.ac.uk, samuel.wiese@cs.ox.ac.uk

Date: Tuesday 23rd November, 2021.
We thank Doyne Farmer for useful comments at the early stages of this project. We acknowledge fund-

ing from Baillie Gifford (Luca Mungo), the James S Mc Donnell Foundation (Marco Pangallo) and the
Foundation of German Business (Samuel Wiese). Research supported by EPSRC grant EP/V007327/1
(Alex Scott).

1



1. Introduction

The best-response dynamic is a ubiquitous iterative game-playing process in which,

at each time step, players myopically select actions that are a best-response to the

actions last chosen by all other players. The literature at large has established the

equilibrium convergence properties of the best-response dynamic in games with specific

payoff structures; particularly in potential games (Monderer and Shapley, 1996), but

also in weakly acyclic games (Fabrikant et al., 2013), aggregative games (Dindoš and

Mezzetti, 2006), and quasi-acyclic games (Friedman and Mezzetti, 2001, Takahashi and

Yamamori, 2002). But such games constitute a small fraction of all possible games,

so known results are restricted to rather special cases. The performance of the best-

response dynamic in the class of all games remains to be established. In this paper, we

consider the question of whether the best-response dynamic converges to a pure Nash

equilibrium in a small or large fraction of all possible normal-form games.

To answer our question, we take a “random games” approach: we determine whether

the best-response dynamic converges to a pure Nash equilibrium in a game drawn at

random from among all possible games. The random games approach has a long history

in game theory (since Goldman, 1957, Goldberg et al., 1968, and Dresher, 1970), and has

been used to address questions regarding the prevalence of Nash equilibria (Powers, 1990,

Stanford, 1995, 1996, 1997, Cohen, 1998, Stanford, 1999, McLennan, 2005, McLennan

and Berg, 2005, Takahashi, 2008, Kultti et al., 2011, Daskalakis et al., 2011, Quattropani

and Scarsini, 2020), the prevalence of rationalizable strategies (Pei and Takahashi, 2019),

convergence to equilibrium (Pangallo et al., 2019, Amiet, Collevecchio, Scarsini, and

Zhong, 2021, Amiet, Collevecchio, and Hamza, 2021), and to the prevalence of dominance

solvable games (Alon et al., 2021).1 A guiding principle of the approach is that, since the

property of interest (e.g. existence of Nash equilibrium, convergence to Nash equilibrium,

dominance solvability) does not hold in all games, one can at least determine how likely

the property is to hold in the class of all games. To do so, one defines a probability

distribution over all games, and computes the probability that a game drawn randomly

according to this distribution has the desired property.

The playing sequence—the order in which players update their actions—has an im-

portant role in our analysis. We focus on two playing sequences in this paper. At one

extreme, we consider the random playing sequence, where players take turns to play one

at a time and the next player to play is chosen uniformly at random from among all

players. At the other extreme, we consider a natural deterministic counterpart to the

random sequence, which we refer to as the clockwork playing sequence, where players

1The majority of the literature has focused on normal-form games. Arieli and Babichenko (2016) study
random extensive form games.
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Figure 1. Illustration of a 3-player game with 2 actions per player (left)
and its associated best-response digraph (right). The axes shown in the
center give us our coordinate system: player 1 selects rows (along the
depth), player 2 selects columns (along the width), and player 3 selects
levels (along height). In the left-hand panel, the payoffs of players 1, 2,
and 3 are listed in that order. The unique pure Nash equilibrium at the
profile (1, 2, 1) is a sink of the digraph and is underlined.

take turns to play one at a time according to a fixed cyclic order. The best-response

dynamic under the random playing sequence is widely studied. It is often of interest

in population and evolutionary games (Sandholm, 2010) and its properties have been

analyzed in a variety of games with specific payoff structures.2 The best-response dy-

namic under the clockwork playing sequence appears most frequently in the algorithmic

game theory literature. Its properties have inter alia been studied in auctions (Nisan

et al., 2011), job scheduling (Berger et al., 2011), network formation games (Chauhan

et al., 2017), and it has been used for equilibrium selection in potential games (Boucher,

2017). Using the random games approach, Durand and Gaujal (2016) show that, in

expectation, convergence to equilibrium in potential games is faster under the clockwork

playing sequence than under any other playing sequence.

The playing sequence is essentially irrelevant in determining whether the best-response

dynamic converges to equilibrium in potential games—which is the focus of most of the

literature—but it is a key determinant of the dynamic’s convergence properties in non-

potential games. To see this, consider the 3-player game shown in the left-hand panel of

Figure 1 and its associated best-response digraph shown in the right-hand panel. Best-

response digraphs are a commonly used reduced-form representation of a game in which

2It has been analyzed in anonymous games (Babichenko, 2013), near-potential games (Candogan et al.,
2013), potential games (Christodoulou et al., 2012, Coucheney et al., 2014, Swenson et al., 2018, Durand
et al., 2019), and games on a lattice (Blume et al., 1993). “Sink” equilibria are studied in (Goemans
et al., 2005, Mirrokni and Skopalik, 2009).
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the vertices are the action profiles and the directed edges correspond to the players’

best-responses (e.g. see Young, 1998, Chapter 7, or Pangallo et al., 2019). It is easy to

show that a game is a potential game if and only if its best-response digraph is acyclic,

which implies that the playing sequence plays almost no role: as long as each player with

a remaining payoff-improving action has a chance to play—which is the case for both the

random and the clockwork playing sequences—the dynamic must eventually end at a

sink of the digraph, i.e. a Nash equilibrium of the game.3 In contrast, in the non-potential

game shown in Figure 1, convergence is dependent on the playing sequence: with initial

profile (1, 1, 1), the random sequence best-response dynamic must eventually converge

to the Nash equilibrium, whereas the clockwork sequence best-response dynamic with

cyclic player order 1-2-3-1-... will remain stuck cycling on the four profiles on the front

face of the cube forever.

Since we are assessing the performance of the best-response dynamic over the class of

all games (including non-potential games), it is necessary for us to be explicit about the

details of the playing sequence. There are of course many possible playing sequences,4

but our focus on random vs. clockwork suffices for our main finding: whether the best-

response dynamic converges to equilibrium in a small or large fraction of all games

depends on the playing sequence in an extreme way. Broadly, we show that under a

clockwork playing sequence, the fraction of all n-player games in which the best-response

dynamic converges to a pure Nash equilibrium goes to 0 as the number of players and/or

actions gets large. By contrast, under a random playing sequence, the fraction of all n-

player games with a pure Nash equilibrium in which the best-response dynamic converges

to a pure Nash equilibrium goes to 1 as the number of players and/or actions gets large

(when n > 2).

That the best-response dynamic converges less often under a clockwork than under

a random playing sequence is perhaps unsurprising since the clockwork sequence will

have more difficulty escaping best-response cycles. We therefore expect the probability

of convergence to equilibrium for the clockwork sequence to be less than it is for the

random sequence. However, the resulting extreme jump in the asymptotic equilibrium

convergence frequency from 1 to 0 is rather striking. Since most games have digraphs that

contain cycles (i.e. are not potential games), our contribution can be seen as quantifying

the fact that a clockwork playing sequence is very likely to become trapped in such cycles

whereas the random playing sequence is very likely to escape them.

3Any such playing sequence may affect the path taken to equilibrium but not whether the path ends at
a sink.
4Simultaneous updating by all players at each time step is studied in Quint et al. (1997) for 2-player
games and in Kash et al. (2011) for anonymous games. Feldman and Tamir (2012) study the case
in which the sequence of play depends on current payoffs. Feldman et al. (2017) study the dynamic
inefficiency of the best-response dynamic under different playing sequences.
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We now provide a brief technical overview of our methods and results. To generate

games at random we follow the majority of papers in the random games literature

by drawing each player’s payoff at each action profile independently according to an

arbitrary atomless distribution.5 This induces a uniform distribution over best-response

digraphs, and it is in this sense that we can claim convergence in a large or small fraction

of all games. The probability of convergence to a pure Nash equilibrium can be reduced

to working out the probability that the best-response path initiated at a random vertex

hits a sink of the randomly drawn digraph.

In Section 3.1 we show that the probability that the clockwork best-response dynamic

converges to a pure Nash equilibrium in a game with n > 2 players and mi ≥ 2 actions

per player i is, up to a polynomial factor, of order 1/
√
qn,m, where qn,m :=

∏n
i=1mi

maximi
is

the minimal number of strategic environments in the game (i.e. the minimal number of

combinations of actions of all but one player). The proof relies on a coupling argument

that makes it possible to deal with the path-dependence of the best-response dynamic.

The result has two implications. (i) For large qn,m, the probability of convergence is

determined by the value of a single parameter, namely, the minimal number of possi-

ble strategic environments, so all games with an identical minimal number of strategic

environments have similar asymptotic probabilities of convergence to equilibrium. This

is reflected in our simulations even for small values of qn,m. (ii) When the number of

players n and/or the number of actions per player is large for at least two players (im-

plying qn,m →∞), the probability that the clockwork best-response dynamic converges

to a pure Nash equilibrium goes to zero. This is in stark contrast with the convergence

properties of the random sequence best-response dynamic.

In Section 3.2 we provide more detailed theoretical results for games with n = 2

players. In particular, we provide results on game duration and we derive an exact

expression for the probability that the best-response dynamic converges to a (best-

response) cycle of given length at a particular time. As a special case, we obtain the

exact probability that the clockwork best-response dynamic converges to a pure Nash

equilibrium in 2-player games with mi actions per player. Unlike in games with n > 2

players in which the clockwork and random sequences behave very differently from each

other, the probability of convergence to equilibrium is the same for the random and

clockwork playing sequences in 2-player games. Furthermore, when m1 = m2 = m, we

show that this probability is asymptotically
√
π/m when m is large.

5See Goldberg et al. (1968), Stanford (1999), Berg and Weigt (1999), Rinott and Scarsini (2000), Galla
and Farmer (2013), Sanders et al. (2018), Pangallo et al. (2019) for work on random games with payoff
correlations.
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2. Best-response dynamics in games

2.1. Games. A game with n ≥ 2 players and mi ≥ 2 actions per player i is a tuple

gn,m := ([n], {[mi]}i∈[n], {ui}i∈[n]),

where m := (m1, ...,mn), [n] := {1, ..., n} is the set of players, and each player i ∈ [n]

has a set of actions [mi] := {1, ...,mi} and a payoff function ui : M → R, where

M := ×i∈[n][mi].

An action profile is a vector of actions a = (a1, ..., an) ∈M that lists the action taken

by each player. An environment for player i is a vector a−i ∈ M−i := ×j∈[n]\{i}[mj ]

that lists the action taken by each player but i. A best-response correspondence bi for

player i is a mapping from the set of environments for player i to the set of all non-empty

subsets of i’s actions and is defined by

bi(a−i) := arg max
ai∈[mi]

ui(ai,a−i).

In the rest of this paper, we consider only games in which for each player i and environ-

ment a−i, the best-response action is unique. This is the case for games in which there

are no ties in payoffs.6

An action profile a ∈ M is a pure Nash equilibrium (PNE) if for all i ∈ [n] and all

ai ∈ [mi], ui(a) ≥ ui(ai,a−i). Equivalently, a is a PNE if each player i ∈ [n] is playing

their (assumed unique) best-response action i.e. ai = bi(a−i). Denote the set of PNE of

the game gn,m by PNE(gn,m) and let #PNE(gn,m) denote the cardinality of this set.

2.2. Best-response digraphs. The best-response structure of a game gn,m can be

represented by a best-response digraph D(gn,m) whose vertex set is the set of action

profiles M and whose edges are constructed as follows: for each i ∈ [n] and each pair

of distinct vertices a = (ai,a−i) and a′ = (a′i,a−i), place a directed edge from a to a′ if

and only if a′i is player i’s best-response to environment a−i, i.e. a′i = bi(a−i). There are

edges only between action profiles that differ in exactly one coordinate. A profile a is a

PNE of gn,m if and only if it is a sink of the best-response digraph D(gn,m). It is easy to

show that a game is a potential game if and only if its best-response digraph is acyclic.7

2.3. Best-response dynamics. We now consider games played over time, with each

player in turn myopically best-responding to their current environment.

6There are no ties in payoffs if for all i ∈ [n], all a−i, and all ai 6= a′i, ui(ai,a−i) 6= ui(a
′
i,a−i).

7Here is a proof outline. A game is a (ordinal) potential game if there exists a function ρ : M → R
such that for all a ∈ M, i ∈ [n], and a′i ∈ [mi], ui(a

′
i,a−i) > ui(a) if and only if ρ(a′i,a−i) > ρ(a).

If the best-response digraph has a cycle (a1 · · ·ak) then the potential function would need to satisfy
ρ(ak) > ... > ρ(a1) > ρ(ak), a contradiction. For the converse, suppose the best-response digraph is
acyclic. We can then define a partial order by a < a′ if there is a path from a to a′. By the order-extension
principle, this extends to a total order and the potential can be chosen accordingly.
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A playing sequence function s : N → [n] determines whose turn it is to play at each

time t ∈ N, where N denotes the set of positive integers.8 We will be interested in

two specific playing sequences. The clockwork playing sequence is defined by sc(t) :=

1 + (t − 1) mod n, so player 1 plays at time 1, followed by player 2, then 3, and so

on until player n, and then the sequence returns to player 1, and so on. The random

playing sequence sr is determined as follows: for each t ∈ N, draw sr(t) uniformly at

random from [n]. So, at each time, the player playing at that time is drawn uniformly at

random from among all players. It is easy to see that, starting from any initial profile,

the random sequence best-response dynamic must eventually converge to the PNE of

the game shown in Figure 1, but it is by no means guaranteed to converge to a PNE in

all games.9 In what follows we restrict our attention to playing sequences s ∈ {sc, sr}.
A path 〈~a, s〉 is an infinite sequence of action profiles ~a = (a0,a1, ...) and an associated

playing sequence function s : N → [n] satisfying the constraint that only one player

changes her action at a time, i.e. at−s(t) = at−1−s(t) for each t ∈ N. So only the action of

player s(t) is allowed to differ between profiles at−1 and at along a path.

The best-response dynamic with playing sequence s : N→ [n] on a game gn,m initiated

at the action profile a0 is the following process: set the initial action profile to a0 and,

at each time t ∈ N, player s(t) myopically plays her best-response ati = bi(a
t−1
−i ) to

her current environment at−1−s(t). The best-response dynamic effectively generates a path

〈~a, s〉 by traveling along the edges of the best-response digraph D(gn,m) in direction s(t)

at step t starting from the initial profile a0.10

2.4. Convergence. For any path 〈~a, s〉 and set of action profiles A ⊆ M the hitting

time H〈~a,s〉(A) := inf{t ∈ N : at ∈ A} is the first time t ≥ 1 at which some element of

the sequence ~a is in, or (first) hits, the set A (inf is the infimum operator and we use

the convention that inf ∅ =∞).11 We say that the s-sequence best-response dynamic on

game gn,m initiated at a0 converges to a PNE if its path 〈~a, s〉 hits PNE(gn,m) in finite

time. Clearly, if a path hits a PNE at some time t, it stays there forever after.

8Our results hold for any permutation of player labels.
9It is, for example, easy to construct games with a PNE in which there is a cluster of non-PNE pro-
files that, once visited, cannot be escaped by the random sequence best-response dynamic. Amiet,
Collevecchio, and Hamza (2021) refer to such clusters as “best-response traps”.
10More precisely, the infinite sequence of actions ~a is determined as follows: if player s(t) is already
best responding then at−1 does not point to any vertex (a′s(t),a

t−1
−s(t)) 6= at−1 and the next profile in the

sequence is at−1 itself, i.e. at = at−1; otherwise, if player s(t) is not already playing her best response then
travel to the vertex that corresponds to her playing her best-response action, i.e. set at = (a′s(t),a

t−1
−s(t))

where (a′s(t),a
t−1
−s(t)) 6= at−1 is the unique vertex that at−1 points to.

11We also say that the path hits A by t if it hits A at time τ with τ ≤ t, and the path hits A before
(after) t if it hits A at time τ < t (τ > t).
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2.5. Best-response dynamics on random games. We generate random games by

drawing all payoffs at random: for each a ∈M and i ∈ [n], the payoff Ui(a) is a random

number that is drawn from an atomless distribution P. The draws are independent across

all i ∈ [n] and a ∈ M. The distribution P ensures that any ties in payoffs have zero

measure, so almost surely each environment has a unique best-response for each player.

A random game drawn in this way is denoted by Gn,m := ([n], {[mi]}i∈[n], {Ui}i∈[n]).
The best-response dynamic on random games is described by Algorithm 1. We ran-

domly draw a game and run the best-response dynamic on the drawn game, starting

from a randomly drawn initial profile A0.12 Doing so induces a distribution over paths

and PNE sets.

Algorithm 1 s-sequence best-response dynamic on Gn,m

(1) For all i ∈ [n] and a ∈M draw Ui(a) at random according to P
(2) Draw A0 uniformly at random from M
(3) For t ∈ N:

(a) Set i = s(t)
(b) Set At

−i = At−1
−i

(c) Set Ati = Bi(A
t−1
−i ) where Bi(A

t−1
−i ) := arg maxxi∈[mi] Ui(xi,A

t−1
−i )

The notion of convergence given in Section 2.4 applies here. Namely, the s-sequence

best-response dynamic on game Gn,m (and initial condition A0) converges to a PNE if

its path 〈~A, s〉 (generated according to Algorithm 1) hits PNE(Gn,m) in finite time.

3. Theoretical results

In this section, we present the theoretical results for best-response dynamics in random

games. In Section 3.1 we focus on games with n > 2 players. In this case, we find that

best-response dynamics behave very differently under clockwork vs. random playing

sequences. Most of our results on the probability of convergence to equilibrium are

asymptotic. In Section 3.2 we focus on games with n = 2 players. In this case, the

probability of convergence to equilibrium is the same under both clockwork and random

playing sequences. Furthermore, we are able to provide asymptotic as well as exact

results for game duration and for the probability of convergence to equilibrium.

The quantity

qn,m :=

∏
i∈[n]mi

maxi∈[n]mi

12We draw the initial profile A0 uniformly at random from among all profiles, but this is merely a stylistic
choice: since the game itself is drawn at random, the choice of initial condition is actually irrelevant, i.e.
our results would not change if we had arbitrarily fixed the initial profile to some specific value.
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is central to our results and it appears frequently in the literature on random games

(for example, see Dresher, 1970, or Rinott and Scarsini, 2000). As summarized in the

proposition below, the probability that there is a pure Nash equilibrium is asymptotically

1− exp{−1} ≈ 0.63 as qn,m gets large.

Proposition 1 (Rinott and Scarsini, 2000).

lim
qn,m→∞

Pr [#PNE(Gn,m) ≥ 1] = 1− exp{−1}.

Since qn,m → ∞ if and only if n → ∞ or mi → ∞ for at least two players i, the

probability that there is a PNE in a randomly drawn game approaches 1 − exp{−1}
when the number of players gets large or when the number of actions per player gets

large for at least two players.13

3.1. Games with n > 2 players. The following result shows that, in large 2-action

games, the random sequence best-response dynamic converges with high probability to

a PNE if there is one. Let 2 denote a n-vector of 2s.

Proposition 2 (Amiet, Collevecchio, Scarsini, and Zhong, 2021).

lim
n→∞

Pr [sr-best-response dynamic on Gn,2 converges to a PNE |#PNE(Gn,2) ≥ 1] = 1.

Combined with Proposition 1, it follows that over the class of all 2-action games,

the random sequence best-response dynamic converges to a PNE with probability about

(1− exp{−1}), i.e. in approximately 63% of those games, when the number of players is

large.

A generalization of Proposition 2 to games with more than 2 actions per player is

non-trivial. There are currently no existing analytical results for such cases, so this area

remains open for future research. However, we conjecture that for n > 2, the random

sequence best-response dynamic converges to a PNE with high probability if there is one

as qn,m → ∞. Consistent with this conjecture, in the simulations of Section 4 we show

that, provided n > 2, the random sequence best-response dynamic does converge to a

PNE with probability close to 1 − exp{−1} when n gets large or when the number of

actions gets large for at least two players.

Our main result for the clockwork sequence best-response dynamic in games with

n > 2 players is given below.

13Using results from Arratia et al. (1989), Rinott and Scarsini (2000) prove the stronger result that the
distribution of the number of PNE in random games is asymptotically Poisson(1) as qn,m → ∞. The
probability that a PNE exists in a random game was previously studied by Goldberg et al. (1968) in the
2-player case and by Dresher (1970) in the n-player case as the number of actions gets large for at least
two players. Powers (1990) and Stanford (1995) noted that the distribution of #PNE(Gn,m) approaches
a Poisson(1) as the number of actions gets large.

9



Theorem 1.

lim
qn,m→∞

Pr [sc-best-response dynamic on Gn,m converges to a PNE] = 0.

So, with high probability, the clockwork sequence best-response dynamic does not

converge to a PNE as the number of players gets large or as the number of actions for

at least two players gets large. This is in sharp contrast with the asymptotic behavior of

the random sequence best-response dynamic. It is intuitive that the clockwork sequence

converges to a PNE less often than the random sequence because it will have more

difficulty escaping cycles in a best-response digraph. That said, the extreme swing in

the asymptotic probability of convergence from 1 to 0 is rather striking.

Theorem 1 is an immediate consequence of the result below, which gives us bounds

on the probability of convergence to equilibrium:

Theorem 2.

1

4
√
n

1
√
qn,m

≤ Pr

[
sc-best-response dynamic

on Gn,m converges to a PNE

]
≤

6n
√

log(qn,m)
√
qn,m

.

The bounds above both go to zero as n gets large or when the number of actions gets

large for at least two players.

We briefly comment on Theorem 2 and its implications. (i) In Algorithm 1, drawing

payoffs independently at random (from an atomless distribution) induces a uniform

distribution over best-response digraphs.14 It is in this sense that we can say that the

best-response dynamic converges in a “large” or “small” fraction of all games. (ii) Our

proof of Theorem 2 relies on a coupling argument (explained in the appendix) that makes

it possible to deal with the path-dependence of the best-response dynamic (which arises

from the fact that if a player encounters an environment that they had seen before, they

must play the same action that they played when the environment was first encountered).

The proof centers on bounding the time it takes for some player to re-encounter a

previously seen environment along a best-response path and this time is fundamentally

determined by qn,m, which is the minimal number of possible environments. (iii) In fact,

Theorem 2 gives us the following corollary, which shows that the asymptotic probability

14This follows from the manner in which the payoffs are drawn: there is a zero probability of ties because
P is atomless and for each i ∈ [n] the probability that action ai ∈ [mi] is a best-response to environment
a−i is given by

Pr

[
Ui(ai,a−i) = max

xi∈[mi]
Ui(xi,a−i)

]
=

1

mi
.

10



of convergence to equilibrium is determined primarily by the value of the parameter

qn,m.15

Corollary 1. The asymptotic probability that the clockwork sequence best-response dy-

namic converges to a PNE is, up to a polynomial factor, of order 1/
√
qn,m.

3.2. Games with n = 2 players. For n = 2 players, we provide detailed results on

both game duration and on the probability of convergence to equilibrium.

If the path 〈~a, sc〉 generated by the clockwork best-response dynamic on a 2-player

game g2,m has the property that from t onwards, the sequence of 2k possibly non-distinct

action profiles at, ...,at+2k−1 repeats itself forever and t is the hitting time to at, then

we say that the clockwork best-response dynamic converged to a cycle of length 2k, or

a 2k-cycle, at time t, where k ∈ {1, ...,m∗} and m∗ := min{m1,m2}.

Theorem 3. For any k ∈ {1, ...,m∗} and t ∈ {1, ..., 2(m∗ − k + 1)},16

Pr

[
sc-best-response dynamic on G2,m

converges to a 2k-cycle at time t

]
=

1

msc(t+2k−1)

t+2k−2∏
i=1

(
1− 1

msc(i)

⌊
i

2

⌋)
.

(1)

Thus we have an exact expression for the probability that the clockwork sequence best-

response dynamic converges to a 2k-cycle at time t.17 Setting k = 1 in (1) yields the

exact probability that the clockwork sequence best-response dynamic on G2,m converges

to a PNE at time t.

As a straightforward corollary of Theorem 3, the probability that the clockwork se-

quence best-response dynamic converges to a 2k-cycle is obtained by summing (1) over

all t ∈ {1, ..., 2(m∗ − k + 1)}:

Corollary 2.

(2)

Pr

 sc-best-response

dynamic on G2,m

converges to a 2k-cycle

 =

2(m∗−k+1)∑
t=1

1

msc(t+2k−1)

t+2k−2∏
i=1

(
1− 1

msc(i)

⌊
i

2

⌋)
.

Setting k = 1 in (2) yields the exact probability that the clockwork sequence best-

response dynamic on G2,m converges to a PNE.

15Since log(qn,m) is dominated by a polynomial in n and m, and qn,m grows faster than log(qn,m) and
than n to any power, the asymptotic behavior of each bound is governed by the behavior of the term√
qn,m in the denominator.

16For any k ∈ {1, ...,m∗} the product is non-negative provided t+ 2k − 2 ≤ 2m∗.
17See also Pangallo et al. (2019) for an exact formula giving the probability of existence of cycles of any
length in 2-player games.
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To get a better sense of the behavior of (2), we now study its asymptotics, which

are easiest to see when m1 = m2 = m. We maintain this restriction in the rest of this

section. Let Φ(·) denote the standard normal cumulative distribution function:

Φ(x) :=
1√
2π

∫ x

−∞
exp

{
−z

2

2

}
dz.

We say that f(n) is asymptotically g(n) if f(n)/g(n)→ 1 as n→∞, and f(n) = o(g(n))

denotes f(n)/g(n)→ 0 as n→∞.

Proposition 3. Set m1 = m2 = m. If k = o(m2/3) then, as m→∞, (2) is asymptoti-

cally

2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
.

If k = o(
√
m) then, as m→∞, (2) is asymptotically

√
π/m.

The asymptotics given in Proposition 3 help us to better understand the behavior of

the clockwork sequence best-response dynamic in large 2-player games. (i) The proba-

bility of convergence to a PNE, which corresponds to setting k = 1, goes to zero when

m→∞.18 (ii) Short cycles all have about the same probability. Indeed, for k = o(
√
m)

the probability is asymptotically
√
π/m. Finally, (iii) it is very unlikely that the best-

response dynamic converges to a very long cycle: if k/
√
m → ∞ then the probability

that the dynamic converges to a cycle of length at least 2k tends to 0.19

Theorem 4. Set m1 = m2 = m and fix x > 0. The probability that the sc-best-response

dynamic on G2,m does not hit a cycle (of any length) until at least time step x
√

2m is

asymptotically exp{−x2/2} as m→∞.

This result shows that the clockwork sequence best-response dynamic in 2-player

games is likely to converge to a 2k-cycle (for some k ∈ {1, ...,m}) within
√

2m time

steps when m is large.

We now compare the behavior of the clockwork sequence best-response dynamic in

2-player games with the behavior of the random sequence best-response dynamic in 2-

player games. (i) The probability of convergence to a PNE is the same for clockwork

and for random playing sequences in 2-player games. The reason is that, under the

random playing sequence, players’ actions do not change whenever the sequence asks

18In contrast, for n = 2, Amiet, Collevecchio, and Hamza (2021) find that “better”- (rather than best-)
response dynamics converge to a PNE (whenever there is one) with high probability as m→∞.
19When k = o(

√
m), the argument of Φ(·) goes to zero. Since Φ(0) = 1/2 we have that the convergence

probability goes to
√
π/m which is independent of k. If, instead, k/

√
m → ∞ then the argument of

Φ(·) grows large and since Φ(∞) = 1, the convergence probability goes zero. Our proof of Proposition 3

derives the asymptotics for k = o(m2/3). The standard normal has small tails outside this range.
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the same player to play several times in a row. The profiles that are therefore visited

along the path are the same under both playing sequences, which induces the same

probability of convergence to equilibrium. However, (ii) the expected game duration will

be different since the random playing sequence introduces delays. In fact, the expected

game duration for the random playing sequence should be greater than for the clockwork

playing sequence by a factor of 2. The reason is that, under the clockwork playing

sequence, the players alternate at the tick of each time step whereas, under the random

playing sequence, the time it takes for the playing sequence to turn to the other player is

Geometric(12). Thus the random playing sequence can be considered as a slowing down

of the clockwork playing sequence in which the expected time to play the next step is 2.

4. Simulation results

In this section, we run simulations of the clockwork and random sequence best-

response dynamics. Our main goal is to investigate the extent to which our asymptotic

results are also valid for a small number of players and actions.

In our simulations, for each choice of n and m, we randomly draw 10 batches of 1000

games. We run the best-response dynamic on each game and find the mean frequency of

convergence to equilibrium in each batch, and then report the mean across the batches.

The error bars in our figures are intervals of one empirical standard deviation (across

the means for each batch).

4.1. Simulations of clockwork best-response dynamics. The blue markers in Fig-

ure 2 show the frequency of convergence to a PNE in our simulations for different values

of numbers of players and actions. In both panels, the solid black line is the analyti-

cal probability of convergence to a PNE in 2-player m-action games, calculated using

equation (2) with m1 = m2 = m.

In the top panel, we present simulation outcomes for 2, 3, and 4-player games in

which all players have the same number of actions. Up to sampling noise, our analytical

result for 2-player games perfectly matches the numerical simulations. We also find that

convergence frequency becomes lower for a given number of actions as the number of

players increases.

The blue markers in the bottom panel of Figure 2 are the simulation means for different

values of n and m, all chosen to ensure that the minimal number of environments in those

games match the number of environments in a 2-player m-action game. All markers line

up reasonably well along the solid black line. Corollary 1 implies that the asymptotic

convergence probability in games Gn,m and Gn′,m′ is approximately the same whenever

qn,m = qn′,m′ . Our results show that this relation holds even for relatively small games.
13
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4.2. Simulations of random best-response dynamics. Figure 3 shows the fre-

quency of convergence to a PNE under clockwork vs. random best-response dynamics in

n-player games with m actions per player.20

As argued in Section 3.2, when there are only n = 2 players, the random playing

sequence has the same convergence probability as the clockwork playing sequence, which

can be seen in the left panel of Figure 3.

Looking across the panels, the frequency of convergence to a PNE is decreasing in both

n and m for the clockwork playing sequence, but the random playing sequence is different

because its frequency of convergence rapidly settles near 1−1/e for n > 2. Recall, Amiet,

Collevecchio, Scarsini, and Zhong (2021) proved that the random sequence best-response

dynamic always converges to a PNE if there is one when m = 2 and n→∞. As argued

in Section 3.1, this gives us an unconditional probability of convergence of 1−1/e ≈ 63%.

Our simulations show that the result of Amiet, Collevecchio, Scarsini, and Zhong (2021)

also appears to hold for games with more than two actions provided n > 2. In fact, the

random sequence best-response dynamic almost always converges to a PNE in games

that have a PNE even for relatively small values of n and m.

20The results also hold if we allow for different numbers of actions per player.
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Appendix A. Proofs

The appendix concerns only the clockwork best-response dynamic and presents proofs

for the results stated in the main body of the paper.

A.1. Proof of Theorem 2. We start by stating two lemmas that will be used to

prove Theorem 2. Lemma 1 bounds the probability that the clockwork sequence best-

response dynamic converges to a pure Nash equilibrium after time t. Lemma 2 bounds

the probability that the clockwork sequence best-response dynamic converges to a pure

Nash equilibrium by time t.

Lemma 1. Let 〈~A, sc〉 be generated according to Algorithm 1. For any t ∈ N,

Pr
[
〈~A, sc〉 hits PNE(Gn,m) after t

]
≤ exp

{
−

(
⌊
t
n − 1

⌋
)2

2qn,m

}
.

Lemma 2. Let 〈~A, sc〉 be generated according to Algorithm 1. For any t ∈ N,⌊
t

n

⌋
1

qn,m

(
1−

(
⌈
t
n

⌉
)2

2

n

qn,m

)
≤ Pr

[
〈~A, sc〉 hits PNE(Gn,m) by t

]
≤ t

qn,m
.

We now show how Theorem 2 follows from Lemmas 1 and 2 and, in Section A.2, we

provide proofs for the lemmas themselves.

Proof of Theorem 2. Let 〈~A, sc〉 be generated according to Algorithm 1. The probability

that the sc-best-response dynamic onGn,m converges to a PNE is equal to the probability

that 〈~A, sc〉 hits PNE(Gn,m). Let us start with the upper bound. For any t ∈ N,

Pr
[
〈~A, sc〉 hits PNE(Gn,m)

]
= Pr

[
〈~A, sc〉 hits PNE(Gn,m) by t

]
+ Pr

[
〈~A, sc〉 hits PNE(Gn,m) after t

]
≤ t

qn,m
+ exp

{
−

(
⌊
t
n − 1

⌋
)2

2qn,m

}
.(3)

Equation (3) follows from Lemmas 1 and 2. Now, set

t = n

(⌈√
2qn,m log(qn,m)

⌉
+ 1

)
.

Since n ≥ 2 and mi ≥ 2 for all i, we have
√

2qn,m log(qn,m) > 1, so

n

(√
2qn,m log(qn,m) + 1

)
≤ t ≤ n

(√
2qn,m log(qn,m) + 2

)
< 3n

√
2qn,m log(qn,m).
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It follows that

(4)
t

qn,m
< 3n

√
2 log(qn,m)

qn,m
,

and that

(5) exp

{
−

(
⌊
t
n − 1

⌋
)2

2qn,m

}
≤ 1

qn,m
< n

√
2 log(qn,m)

qn,m
.

Adding the upper bounds in (4) and (5) yields the desired result.

Let us now turn to the lower bound. For any t ∈ N,

Pr
[
〈~A, sc〉 hits PNE(Gn,m)

]
≥ Pr

[
〈~A, sc〉 hits PNE(Gn,m) by t

]
≥
⌊
t

n

⌋
1

qn,m

(
1−

(
⌈
t
n

⌉
)2

2

n

qn,m

)
.(6)

Equation (6) follows from Lemma 2. Now, set

t = n

⌊√
qn,m√
n

⌋
.

Then,

(7) 1−
(d tne)

2

2

n

qn,m
≥ 1

2
.

And since n ≥ 2 and mi ≥ 2 for all i, we have t ≥ 1
2

√
nqn,m, so

(8)

⌊
t

n

⌋
1

qn,m
≥ 1

2
√
n

1
√
qn,m

.

Multiplying the lower bounds in (7) and (8) together yields the desired result. �

A.2. Lemmas. We now turn to the proofs of Lemmas 1 and 2. These require additional

notation which we introduce here.

The notion of convergence given in Section 2.4 applies to all playing sequences but

we can provide a more direct characterization of convergence (and non-convergence) in

terms of path properties when the sequence is clockwork. We refer to one complete

rotation of the clockwork sequence as a round of play; e.g. if a round starts at player i

then each player plays once in order and the round is complete when it is once again i’s

turn to play. For any k ∈ N define

T〈~a,sc〉(k) := inf
{
t ∈ N : at = at+nk and at 6= at+nk

′
for all k′ ∈ N such that k′ < k

}
,

to be the first time at which an action profile is repeated k rounds later (and at no earlier

round). If T〈~a,sc〉(k) is finite, the path 〈~a, sc〉 has the property that from time T〈~a,sc〉(k)
17



onwards, the sequence of nk possibly non-distinct action profiles at, ...,at+nk−1 repeats

itself forever, and we say that the path 〈~a, sc〉 (first) hits an nk-cycle at time T〈~a,sc〉(k).

Note that there is exactly one k such that T〈~a,sc〉(k) is finite.

If the action profile is at at some time t and no one deviates from this profile in a single

round (i.e. at = at+n), then at must be a PNE. Therefore, if the path 〈~a, sc〉 hits an

nk-cycle at time T〈~a,sc〉(k) and k = 1 (k > 1) then the clockwork sequence best-response

dynamic converges to a PNE (a best-response cycle of length nk) at that time.

Let

T〈~a,sc〉 := inf
{
T〈~a,sc〉(k) : k ∈ N

}
,

denote the first time (necessarily finite) at which the path 〈~a, sc〉 hits a PNE or a best-

response cycle.

For any path 〈~a, sc〉 and for each t ∈ N define

f〈~a,sc〉(t) := min
{
u ≤ t : au−1−sc(u) = at−1−sc(t) and sc(u) = sc(t)

}
.

So f〈~a,sc〉(t) is the first time along the path 〈~a, sc〉 that player sc(t) encounters the

environment at−1−sc(t). Finally, define

F〈~a,sc〉 := inf
{
t ∈ N : f〈~a,sc〉(t) < t

}
.

So F〈~a,sc〉 is the first time (necessarily finite) at which some player encounters an envi-

ronment that they encountered previously along the path.

Remark 1 notes that any path generated by the clockwork best-response dynamic

must hit a PNE or a best-response cycle before any player encounters an environment

for the second time.

Remark 1. T〈~a,sc〉 < F〈~a,sc〉.

Roughly speaking, T〈~a,sc〉 denotes the time at which the path ~a hits an nk-cycle (for some

k ≥ 1) whereas F〈~a,sc〉 denotes the time at which the path completes its first circuit.

The quantities T〈~a,sc〉(k), T〈~a,sc〉, and F〈~a,sc〉 are illustrated in an example in Figure 4.

The main challenge posed by paths generated according to Algorithm 1 is that they

have “memory”: whenever player sc(t) encounters an environment that she has encoun-

tered before (i.e. At−1
−sc(t) = Au−1

−sc(u) for some u < t with sc(t) = sc(u)) then, at time t,

the player must play the same action that she played when she previously encountered

the environment (i.e. Atsc(t) = Ausc(u)). This path-dependence complicates the analysis

of the clockwork best-response dynamic. We therefore study a simpler (random walk)

process that is “memoryless” to which we couple a dynamic that induces the same distri-

bution over paths as Algorithm 1. The coupled dynamic follows the random walk process

until an environment is encountered by some player for the second time and becomes
18
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Figure 4. The digraphs above are identical and correspond to the best-
response digraph of the game shown in Figure 1 but we now omit labels
to avoid clutter. In panel (A) the initial profile is set to a0. The first few
elements of the infinite sequence ~a are shown. Once at the profile a3 at
t = 3, which is the unique PNE, the path remains there forever. Here,
T〈~a,sc〉 = T〈~a,sc〉(1) = 3 and F〈~a,sc〉 = 6. In panel (B) we have a different

initial profile a0. The path moves to the bottom left corner on the front
face of the cube at t = 1 and then cycles forever among the four profiles
on the front face of the cube. In fact, T〈~a,sc〉 = T〈~a,sc〉(2) = 1, so the path
hits a 6-cycle at time 1: once reached, the (not all distinct) action profiles
in the sequence a1, ...,a6 are repeated forever. Here, F〈~a,sc〉 = 7.

deterministic thereafter. We elaborate on our argument’s reliance on this coupling after

the proof of Lemma 1.

The coupled system is described by Algorithms 2 and 3 and is illustrated in Figure 5.

〈~X, sc〉 and 〈~Y, sc〉 denote paths generated according to Algorithms 2 and 3 respectively.

Algorithm 2 Clockwork random walk

(1) Draw an initial profile X0 uniformly at random from M
(2) For t ∈ N:

(a) Set i = sc(t)
(b) Set Xt

−i = Xt−1
−i

(c) Independently draw Xt
i uniformly at random from [mi]

Algorithm 2 is a “clockwork random walk” on the set of action profilesM. The walk

starts at some randomly drawn initial profile X0 and, at each time t, moves in direction

sc(t) to a profile chosen uniformly at random from among the msc(t) profiles in that

direction. A path generated according to this process does not have memory.

Algorithm 3 describes the coupled dynamic. The process starts at the same initial

profile as the clockwork random walk. For each player i and environment a−i, we set
19



Algorithm 3 Coupled dynamic

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈M−i
(2) Set the initial action profile to Y0 = X0

(3) For t ∈ N:
(a) Set i = sc(t)
(b) Set Yt

−i = Yt−1
−i

(c) If Ri(Y
t−1
−i ) = 0: set Y t

i = Xt
i and Ri(Y

t−1
−i ) = Y t

i

If Ri(Y
t−1
−i ) 6= 0: set Y t

i = Ri(Y
t−1
−i )

the initial “response” value Ri(a−i) to zero and update it at step (3c) of the algorithm

in the following manner: if the response value to the current environment Yt−1
−i is zero,

then the environment was never encountered before and, in that case, player i’s response

value is set to Xt
i , the action drawn by the clockwork random walk at time t. If, on

the other hand, the response value to the current environment Yt−1
−i is non-zero (i.e. the

environment was encountered before), then this value is the action that i takes at time

t. In other words, 〈~Y, sc〉 has the same memory property that is characteristic of paths

generated according to Algorithm 1.

Algorithm 1 essentially draws a best-response digraph “up-front”, then selects an

initial profile and traces a path by traveling along the edges of the digraph starting at

the initial profile and moving in direction sc(t) at step t. In contrast, Algorithm 3 starts

with an empty digraph and then generates its edges in an “online” manner. Nevertheless,

both algorithms induce the same distribution over paths, as summarized in the following

remark.

Remark 2. Let 〈~A, sc〉 and 〈~Y, sc〉 be generated according to Algorithms 1 and 3

respectively. Then 〈~A, sc〉 and 〈~Y, sc〉 have the same distribution.

By construction, the sequences ~X and ~Y must agree at least up to (but not including)

the time at which some player encounters an environment for the second time. At such

a time, under Algorithm 3, the player must play the action determined by their response

function evaluated at that environment but, under Algorithm 2, the next action may be

any of the available actions for that player. Remark 3 summarizes the key relationship

between the clockwork random walk and the coupled dynamic.

Remark 3. F〈~X,sc〉 = F〈~Y,sc〉.

The lemma below, which concerns paths 〈~X, sc〉 that are generated by the clockwork

random walk, is useful for proving Lemmas 1 and 2. Under the clockwork sequence,

player i ∈ [n] plays at time hi(k) := i+ (k− 1)n for k ∈ N. For any i ∈ [n] and any time
20



◦

◦

◦

◦

◦

◦

◦

◦

X0,X6,X7

X1,X2

X3

X4,X5

X8

(a)

◦

◦

◦

◦

◦

◦

◦

◦

Y0,Y6

Y1,Y2,Y7,Y8

Y3

Y4,Y5

1

2

4

5

3

6

(b)

Figure 5. Illustration of Algorithms 2 and 3. Panel (A) shows the first

few elements of a possible path 〈~X, sc〉 generated according to the clock-
work random walk starting at the profile X0. Panel (B), illustrates the

first few elements of the corresponding path 〈~Y, sc〉 generated according
to Algorithm 3, starting with an empty digraph and numbering the di-
rected edges according to the time at which they are first placed. The
paths in panels (A) and (B) are identical up to and including time 6.
At time step 7, however, player 1 encounters the same environment that
she had encountered at time 1 (F〈~X,sc〉 = F〈~Y,sc〉 = 7); namely, players 2

and 3 each choosing action 1. The first time that player 1 encountered
this environment, she responded by playing action 2, so she must play
action 2 again at time 7. From then on, the path in panel (B) will keep
cycling among the action profiles on the left-hand side of the cube forever
whereas the path in panel (A) is allowed to wander freely.

t ≥ i, define

k∗i (t) := 1 +

⌊
t− i
n

⌋
.

So k∗i (t) is the largest k ∈ N such that hi(k) ≤ t. Between times 1 and t (inclu-

sive), player i ∈ [n] plays at times hi(1), hi(2), ..., hi(k
∗
i (t)) and encounters environments

X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i . Lemma 3 establishes bounds on the probability that

these environments are all distinct.

Define µ :=
∏
i∈[n]mi to be the cardinality of M.

Lemma 3. For any i ∈ [n] and t ∈ N,

1−mi

µ

(
⌈
t
n

⌉
)2

2
≤ Pr

[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct

]
≤ exp

{
−
mi(
⌊
t
n − 1

⌋
)2

2µ

}
.
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Proof. For any i ∈ [n], the environments X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i are indepen-

dent because they are disjoint subsets of the draws of the clockwork random walk. Each

environment is distributed uniformly on M−i, and since M−i has cardinality µ
mi

,

(9) Pr
[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct

]
=

k∗i (t)−1∏
k=1

(
1− mik

µ

)
.

If k∗i (t) > 1 + µ
mi

then the probability in (9) must be zero, and the lemma holds trivially

(k∗i (t) > 1+ µ
mi

implies
⌊
t−i
n

⌋
> µ

mi
which, in turn, implies

⌈
t
n

⌉
> µ

mi
, so the lower bound

in the statement of the lemma is negative and the upper bound is positive). We will

therefore consider the case in which k∗i (t) ≤ 1 + µ
mi

.

We obtain the following upper bound:

k∗i (t)−1∏
k=1

(
1− mik

µ

)
≤

k∗i (t)−1∏
k=1

exp

{
−mik

µ

}
≤ exp

{
−mi(k

∗
i (t)− 1)2

2µ

}
≤ exp

{
−
mi(
⌊
t
n − 1

⌋
)2

2µ

}
.

The first step follows from exp{x} ≥ 1 + x for all x. The final inequality follows from

k∗i (t)− 1 =
⌊
t−i
n

⌋
≥
⌊
t−n
n

⌋
=
⌊
t
n − 1

⌋
.

We now turn to the lower bound:

k∗i (t)−1∏
k=1

(
1− mik

µ

)
≥ 1−

k∗i (t)−1∑
k=1

mik

µ
≥ 1− mi

µ

k∗i (t)
2

2
≥ 1− mi

µ

(
⌈
t
n

⌉
)2

2
.

The first step is an application of the Weierstrass product inequality. The final inequality

follows from the fact that k∗i (t) = 1 +
⌊
t−i
n

⌋
≤ 1 +

⌊
t−1
n

⌋
=
⌈
t
n

⌉
. �

Define m∗ := maxi∈[n]mi, so that qn,m = µ
m∗ .

Proof of Lemma 1. T〈~A,sc〉 > t is the event that 〈~A, sc〉 hits PNE(Gn,m) or a best-

response cycle only after time t. So

Pr
[
〈~A, sc〉 hits PNE(Gn,m) after t

]
≤ Pr

[
T〈~A,sc〉 > t

]
.

By Remarks 1, 2, and 3,

Pr
[
T〈~A,sc〉 > t

]
≤ Pr

[
F〈~A,sc〉 > t

]
= Pr

[
F〈~Y,sc〉 > t

]
= Pr

[
F〈~X,sc〉 > t

]
.

Now, let us focus on the path 〈~X, sc〉 and consider a player i satisfying mi = m∗.

The environments that player i faces between times 1 and t are given in the sequence

X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i . The event F〈~X,sc〉 > t implies that the environments

in this sequence are all distinct. Hence

Pr
[
F〈~X,sc〉 > t

]
≤ Pr

[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct

]
≤ exp

{
−

(
⌊
t
n − 1

⌋
)2

2qn,m

}
,
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where the final step follows from Lemma 3. �

The proof of Lemma 1 illustrates why we study a coupled system. Finding an upper

bound on the probability that 〈~A, sc〉 hits PNE(Gn,m) after t is central to our proof of

Theorem 2. Our key step consists in showing that this probability is bounded above

by the probability that the environments X
hi(1)−1
−i , X

hi(2)−1
−i ,..., X

hi(k
∗
i (t))−1

−i , which are

generated by the clockwork random walk, are all distinct. This latter probability is

easy to work out because the environments are independent uniform random draws. To

avoid coupling, one might be tempted to argue that since the probability that 〈~A, sc〉
hits PNE(Gn,m) after t is bounded above by the probability that the environments

A
hi(1)−1
−i ,A

hi(2)−1
−i , ...,A

hi(k
∗
i (t))−1

−i generated by Algorithm 1 are all distinct, one only

needs to work out this latter probability. But this probability is not straightforward to

work out: these environments are not independent uniform random draws since they are

generated by a path-dependent process.

To prove Lemma 2, we introduce a slight modification of Algorithm 3. Algorithm

4, which describes a dynamic that is also coupled with the clockwork random walk,

is identical to Algorithm 3 except that for some particular profile x the algorithm is

initialized with Ri(x−i) = xi for all i ∈ [n]. This effectively “plants” a sink in the

digraph (at x). In the remaining steps, Algorithm 4 selects a random initial profile

Algorithm 4 Coupled dynamic with sink x

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈M−i
(2) Set Ri(x−i) = xi for all i ∈ [n]
(3) Set the initial action profile to Z0 = X0

(4) For t ∈ N:
(a) Set i = sc(t)
(b) Set Zt−i = Zt−1−i
(c) If Ri(Z

t−1
−i ) = 0: set Zti = Xt

i and Ri(Z
t−1
−i ) = Zti

If Ri(Z
t−1
−i ) 6= 0: set Zti = Ri(Z

t−1
−i )

and starts tracing a path by traveling along edges that (other than those edges already

pointing to x in the initialization) are generated in an online manner. The paths traced

by the clockwork random walk and this coupled dynamic with a sink at x must agree at

least up to (but not including) the time at which either an environment is encountered

by a player for the second time or the environment is x−i for some player i.

〈~Z,x, sc〉 denotes a path generated according to Algorithm 4.

Remark 4. Let 〈~A, sc〉 and 〈~Z,x, sc〉 be generated according to Algorithms 1 and 4

respectively. Then the distribution of 〈~A, sc〉 conditional on x ∈ PNE(Gn,m) is the

same as the distribution of 〈~Z,x, sc〉.
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Proof of Lemma 2. For any t ∈ N,

Pr
[
〈~A, sc〉 hits PNE(Gn,m) by t

]
=
∑
x∈M

Pr
[
〈~A, sc〉 hits {x} by t and x ∈ PNE(Gn,m)

]
=
∑
x∈M

Pr
[
〈~A, sc〉 hits {x} by t

∣∣∣x ∈ PNE(Gn,m)
]

Pr [x ∈ PNE(Gn,m)]

=
∑
x∈M

Pr
[
〈~Z,x, sc〉 hits {x} by t

]
︸ ︷︷ ︸

(10.1)

Pr [x ∈ PNE(Gn,m)]︸ ︷︷ ︸
(10.2)

(10)

The final step follows from Remark 4; namely, the probability that 〈~A, sc〉 hits {x} by

time t conditional on x ∈ PNE(Gn,m) is equal to the probability that 〈~Z,x, sc〉 hits {x}
by time t. We now analyze the expressions (10.1) and (10.2).

For (10.2), since payoffs are drawn identically and independently according to the

atomless distribution P, we have that

(11) Pr [x ∈ PNE(Gn,m)] =
n∏
i=1

Pr

[
Ui (x) ≥ max

x′i∈[mi]
Ui
(
x′i,x−i

)]
=

1

µ
.

We now find upper and lower bounds on (10.1) by relating 〈~Z,x, sc〉 to the clockwork

random walk path 〈~X, sc〉. We start with the upper bound. Notice that 〈~Z,x, sc〉 cannot

hit {x} by time t unless Xτ−1
−sc(τ) = x−sc(τ) for some τ ≤ t. Therefore

Pr
[
〈~Z,x, sc〉 hits {x} by t

]
≤ Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ)} = x−sc(τ)}

]

≤
t∑

τ=1

Pr
[
Xτ−1
−sc(τ) = x−sc(τ)

]
=

t∑
τ=1

msc(τ)

µ

≤ t

qn,m
.(12)

The penultimate step follows from the fact that Xτ−1
−sc(τ) consists of n − 1 independent

uniform random variables (one action for each player other than sc(τ)), so Xτ−1
−sc(τ) is

itself uniformly drawn from M−sc(τ), and M−sc(τ) has cardinality µ
msc(τ)

.

We now turn to the lower bound. If F〈~X,sc〉 > t and Xτ−1
−sc(τ) = x−sc(τ) for some τ ≤ t

then 〈~Z,x, sc〉 must hit {x} by time t. In other words, if no environments are repeated

for any player and the environment is x−i for some player i by time t, then 〈~Z,x, sc〉
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must hit {x} by time t. Therefore,

Pr
[
〈~Z,x, sc〉 hits {x} by t

]
≥Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)} and F〈~X,sc〉 > t

]

= Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)}

∣∣∣∣F〈~X,sc〉 > t

]
Pr
[
F〈~X,sc〉 > t

]
.(13)

To bound the first term in (13), select a player i satisfying mi = m∗ and notice that

X
hi(k)−1
−i = x−i for some k ∈ {1, ..., k∗i (t)} implies that Xτ−1

−sc(τ) = x−sc(τ) for some τ ≤ t.
Therefore

Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)}

∣∣∣∣F〈~X,sc〉 > t

]
≥ Pr

k∗i (t)⋃
k=1

{Xhi(k)−1
−i = x−i}

∣∣∣∣F〈~X,sc〉 > t


=

k∗i (t)∑
k=1

Pr
[
X
hi(k)−1
−i = x−i

∣∣∣F〈~X,sc〉 > t
]

=

k∗i (t)∑
k=1

m∗

µ

≥
⌊
t

n

⌋
1

qn,m
.(14)

The second line follows from the fact that since all the environments for our chosen player

i are distinct, the events in the union are mutually exclusive. The next step follows from

the fact that our process is invariant under symmetry. So for any k ∈ {1, ..., k∗i (t)} and

for all x−i and y−i, Pr[X
hi(k)−1
−i = x−i |F〈~X,sc〉 > t] = Pr[X

hi(k)−1
−i = y−i |F〈~X,sc〉 > t]

which implies that Pr[X
hi(k)−1
−i = x−i |F〈~X,sc〉 > t] = m∗

µ = 1
qn,m

. The last step follows

from k∗i (t) = 1 +
⌊
t−i
n

⌋
≥ 1 +

⌊
t
n − 1

⌋
=
⌊
t
n

⌋
.

To bound the second term in (13), notice that if for each i ∈ [n] the environments

X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i are all distinct then F〈~X,sc〉 > t. Therefore

Pr[F〈~X,sc〉 > t] ≥ Pr

 ⋂
i∈[n]

{Xhi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct}


= 1− Pr

 ⋃
i∈[n]

{Xhi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are not all distinct}


≥ 1−

∑
i∈[n]

Pr
[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are not all distinct

]
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≥ 1−
(
⌈
t
n

⌉
)2

2

∑n
i=1mi

µ

≥ 1−
(
⌈
t
n

⌉
)2

2

n

qn,m
.(15)

The penultimate step follows from Lemma 3.

Gathering the results (10), (11), (12), (14), and (15) together yields the desired con-

clusion. �

A.3. Results for 2-player games. In games with n = 2 players, the action taken by

player sc(t) at t corresponds exactly to the environment that player sc(t + 1) faces at

t+ 1. We take advantage of this property in our proof of Theorem 3 below.

Proof of Theorem 3. Let ηt denote the probability under the 2-player clockwork random

walk that, by time t, no player plays an action that corresponds to an environment that

was ever encountered by the other player. For t ≥ 1 we have

ηt+1 = ηt ×

(
1−

⌈
t
2

⌉
msc(t+1)

)
.

The term in parentheses is the probability that player sc(t + 1) does not repeat any of

the
⌈
t
2

⌉
environments encountered by player sc(t) by time t. Solving with η1 = 1 yields

ηt =

t∏
i=1

(
1− 1

msc(i)

⌊
i

2

⌋)
,

and, evidently, ηt is non-negative provided t ≤ 2m∗.

For the path to hit a 2k-cycle at time t, it must be that (i) by time t + 2k − 2, no

player plays an action that corresponds to an environment that was ever encountered

by the other player, and (ii) the action taken by player sc(t+ 2k− 1) at time t+ 2k− 1

is equal to the environment encountered by player sc(t) at time t. So, the probability

that the clockwork sequence best-response dynamic converges to a 2k-cycle at time t is
ηt+2k−2

msc(t+2k−1)
, which completes the proof. �

For the remaining proofs, we employ the following standard notation for asymptotics:

we write f(n) = o(g(n)) if f(n)/g(n) → 0 as n → ∞, f(n) ∼ g(n) if f(n)/g(n) → 1 as

n→∞, and f(n) = O(g(n)) if there is M > 0 and N such that |f(n)| ≤ Mg(n) for all

n ≥ N .

Proof of Theorem 4. ηt is precisely the probability that the clockwork best-response dy-

namic does not hit a 2k-cycle (for any k) until at least time t. With m1 = m2 = m we
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can write ηt as

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
=


m!2

(m− t+1
2

)!2mt+1 if t is odd(
m− t

2
m

)
m!2

(m− t
2
)!2mt

if t is even
.

Using Stirling’s formula which states that

n! ∼
√

2πn · nn exp{−n},

as n→∞, we obtain

(16)
m!2

(m− t+1
2 )!2mt+1

∼

(
m− t+1

2

m

)t−2m
exp{−(t+ 1)},

and

(17)

(
m− t

2

m

)
m!2

(m− t
2)!2mt

∼
(
m− t

2

m

)t−2m
exp{−t},

whenever m− t→∞. Taking a logarithm of the last expression we get

−t+ (t− 2m) ln

(
1− 1

m

t

2

)
= −t+ (t− 2m)

(
−1

2

t

m
− 1

8

t2

m2
+O

(
t3

m3

))
= −1

4

t2

m
+O

(
t3

m2

)
.

Provided that t = o(m2/3), the second term goes to zero and therefore equation (17)

behaves asymptotically like exp{−t2/(4m)}. An identical argument shows that, under

the same conditions, (16) is also asymptotically exp{−t2/(4m)}. Hence,

(18)

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
∼ exp

{
− t2

4m

}
.

This completes the proof of Theorem 4. Note that approximation (18) holds uniformly

in the range [1, o(m2/3)]. �

Proof of Proposition 3. Let T = T (m) satisfy T = o(m2/3) and k = o(T ). We assume

that T ≥ m2/3

ln(m) so that T is not too small, and we split the summation in (2) into two

ranges: t ≤ T and t > T . Since (18) holds uniformly in our first range, we have

1

m

T∑
t=1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
∼ 1

m

T∑
t=1

exp

{
−(t+ 2(k − 1))2

4m

}
.
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We now approximate the summation on the right-hand side with an integral. Firstly,

note that

1

m

∫ T+1

1
exp

{
−(t+ 2(k − 1))2

4m

}
dt =

√
2

m

∫ T+1+2(k−1)√
2m

2k−1√
2m

exp

{
−x

2

2

}
dx

∼
√

2

m

∫ ∞
2k−1√

2m

exp

{
−x

2

2

}
dx

= 2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
,(19)

where the first step uses the transformation x = (t+ 2(k − 1))/
√

2m. Furthermore,

1

m

∫ 1

0
exp

{
−(t+ 2(k − 1))2

4m

}
dt ≤ 1

m
,

which goes to zero faster than (19). Since∫ T+1

1
f(t)dt ≤

T∑
t=1

f(t) ≤
∫ T

0
f(t)dt ≤

∫ T+1

1
f(t)dt+

∫ 1

0
f(t)dt,

for any positive and decreasing function f(·), it follows that

1

m

T∑
t=1

exp

{
−(t+ 2(k − 1))2

4m

}
∼ 2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
.

It remains for us to show that the summation (2) over the second range is negligible.

Since exp{x} ≥ 1 + x and bxc > x− 1 for all x, we obtain the following upper bound:

1

m

2(m−k+1)∑
t=T+1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
≤ 1

m

2(m−k+1)∑
t=T+1

T+1+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)

≤ 1

m

2(m−k+1)∑
t=T+1

exp

− 1

m

T+1+2(k−1)∑
i=1

(
i

2
− 1

)
≤ 2m− 2k − T + 1

m
exp

{
− 1

4m
(T + 2(k − 1)− 2)2

}
.

This expression is small compared to the other half of the sum. �
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