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Abstract

Background and Objective Early-stage diagnosis of laryngeal cancer is

of primary importance to reduce patient morbidity. Narrow-band imaging

(NBI) endoscopy is commonly used for screening purposes, reducing the risks

linked to a biopsy but at the cost of some drawbacks, such as large amount

of data to review to make the diagnosis. The purpose of this paper is to

present a strategy to perform automatic selection of informative endoscopic

video frames, which can reduce the amount of data to process and poten-

tially increase diagnosis performance. Methods A new method to classify

NBI endoscopic frames based on intensity, keypoint and image spatial content

features is proposed. Support vector machines with the radial basis function

and the one-versus-one scheme are used to classify frames as informative,

blurred, with saliva or specular reflections, or underexposed. Results When
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tested on a balanced set of 720 images from 18 different laryngoscopic videos,

a classification recall of 91% was achieved for informative frames, significantly

overcoming three state of the art methods (Wilcoxon rank-signed test, signifi-

cance level = 0.05). Conclusions Due to the high performance in identifying

informative frames, the approach is a valuable tool to perform informative

frame selection, which can be potentially applied in different fields, such us

computer-assisted diagnosis and endoscopic view expansion.

Keywords: Larynx, endoscopy, frame selection, supervised classification.

1. Introduction1

Laryngeal cancer is a malignancy of the laryngeal tract, which, in terms of2

histopathology, takes the form of squamous cell carcinomas (SCC) in the 95%3

to 98% of cases [1]. It has been widely demonstrated in the clinical literature4

that the early-stage diagnosis of laryngeal SCC is crucial to improve the5

survival rate and the quality of life of patients after surgery [2].6

Histopathological examination of tissue samples extracted with biopsy is7

the gold-standard for diagnosis. However, the relevance of visual analysis8

of tissues for screening purposes has recently led to the development of new9

optical-biopsy techniques, such as narrow-band imaging (NBI) endoscopy [3].10

With NBI endoscopy, the clinician can benefit from an enhanced view of su-11

perficial blood vessels with respect to classic white-light endoscopy. This is12

crucial since an altered vascular pattern is a clear sign of tumor onset [1].13

Similarly, a pre-cancerous tissue alteration known as leukoplakia is more visi-14
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Figure 1: Sample images of vocal folds affected by leukoplakia, a pre-cancerous tissue
alteration which causes vocal fold epithelium whitening and thickening.

ble with NBI with respect to standard white-light endoscopy [4]. Leukoplakia15

implies thickening and whitening of the epithelial layer, as shown in Fig. 1,16

and it is associated with an increased risk of cancer onset [4]. From the17

patient’s side, the benefits of endoscopy examination with respect to tissue18

biopsy are associated with reduced risk, trauma and shorter convalescence19

time. Indeed, in case of biopsy, a tissue sample has to be extracted from the20

patient, posing risks related to bleeding, pain, and infection [3].21

Nevertheless, it is recognized that, from the clinician’s side, reviewing22

an endoscopic video is a labour-intensive operation [5]. While focusing on23

particular structures during the video examination, clinicians may miss im-24

portant clues indicating suspicious conditions (e.g., early tumors). This pro-25

cess could be further compromised by the presence of uninformative video26

portions, which prolong the revision time of the endoscopic video.27

Developing a strategy to select informative frames has the potential to28

reduce the amount of data to review, lowering the surgeons’ workload. The29

selection of informative frames can be beneficial also for computer-aided di-30

agnosis algorithms. Preliminary efforts towards the automatic classification31

of cancerous laryngeal tissues can be found in the literature (e.g. [6, 7]), but32
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they require manual frame selection so that the frames to be processed show33

clearly the structures of interest. Frame selection strategies can benefit au-34

tomatic diagnostic algorithms by (i) lowering the amount of computational35

power required, and (ii) avoiding the processing of frames that do not show36

structures of interest. Indeed, frames that do not show interesting structures37

can dilute any further post-processing (such as classification and segmen-38

tation) in computer-assisted diagnosis systems. This has the potential to39

significantly enhance the performance of the diagnosis algorithms.40

Informative frame selection also finds application in the context of image41

stitching algorithms for endoscopic view expansion, for which the presence42

of uninformative video frames is recognized to strongly affect the resulting43

panoramic image quality [8, 9]. Researches in the field of endoscopic view44

expansion include [10, 11, 12, 13, 14]. Unfortunately, the laryngeal field has45

been underrepresented in these studies, with only one significant contribution46

in [5] and our preliminary work in [15]. However, a clear limitation of the47

system proposed in [5] is the lack of a robust and automatic strategy for the48

selection of informative video frames, while the work in [15] is limited to the49

removal of blurred frames using a sensitive threshold-based approach.50

A possible solution to lower the number of uninformative frames is ex-51

ploiting preliminary visual image quality assessment through subjective eval-52

uation. This operation is, however, prone to human error and usually too53

inconvenient and time-consuming [16].54

Automatic selection of informative frames is a valuable alternative. In55
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Figure 2: Visual examples of laryngeal video frames. (a) Informative frame (I); (b) Blurred
frame (B); (c) Frame with saliva and specular reflections (S); (d) Underexposed frame (U).

the context of laryngoscopic video analysis, the identification of informative56

frames, such as the one in Fig. 2a, is not trivial [8]. Beside the well-known57

challenges associated to endoscopy, such as high camera-noise level in the58

images, major challenges typical of the laryngeal district include:59

• Movement of swallowing muscles and vocal folds, as well as free and60

varying endoscope pose, which produces blurring in the images (Fig. 2b)61

• Presence of specular reflections, due to the smooth and wet laryngeal62

surface, and saliva (Fig. 2c)63

• Varying illumination conditions, resulting in underexposed video frames64

(Fig. 2d)65
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1.1. Related work66

Several attempts to automatic frame selection can be found in the liter-67

ature, even though none of them specifically focuses on laryngoscopic video68

analysis, probably due to the lack of publicly available dataset for testing.69

Many of the approaches exploit simple uniform frame sampling to reduce70

the amount of data to process (e.g., [17, 13] for bladder). Uniform sam-71

pling is fast in terms of run-time, but there is no guarantee that informative72

frames are extracted from all semantically important video segments. At73

the same time, for long segments with identical content a large number of74

redundant keyframes are selected. Moreover, also uninformative frames can75

be potentially elected as keyframes.76

More advanced state of the art frame selection strategies applied to the77

endoscopic medical field can be roughly divided into two branches:78

1.1.1. Video clustering and keyframe extraction79

The goal of this class of algorithm is to cluster video frames with simi-80

lar informative content, exploiting similarity measures between features ex-81

tracted from the images.82

In [18, 19] keyframes are extracted using a keypoint-based approach. A83

keyframe is extracted if the distance between consecutive frames in the key-84

point space overcomes an user defined threshold.85

In [20, 21, 22] features based on color, texture and motion displacement86

are used to identify, with a threshold-sensitive approach, frames with redun-87
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dant informative content. Instead of using simple thresholding, in [23] linear88

discriminant analysis is applied in the feature space.89

In [24], color and edge features are clustered with k-means. From each90

cluster, a representative frame is arbitrarily extracted as keyframe. In [25],91

clusters are obtained with uniform sampling and non-negative matrix factor-92

ization is used to extract keyframes from each cluster.93

This class of algorithms potentially brings the advantage of summarizing94

the video content. Nonetheless, such algorithms do not make any assump-95

tions about the presence of uninformative video portions, which can poten-96

tially represent a high percentage of the endoscopic video content without97

bringing any useful information for diagnosis.98

1.1.2. Uninformative frame removal99

This class of algorithms aims at evaluating if the content of a frame is100

of interest for a given application (e.g., its quality is sufficient to appreciate101

structures of interest).102

In [26, 27, 28], after uniform sampling, uninformative frames are removed103

if the number of keypoints is lower than a threshold.104

The work in [29, 15] uses an intensity-based similarity score to assess the105

degree of images blur. Thresholding is applied to discard low quality images.106

Shannon entropy is instead used in [30, 31].107

In [32, 33], frames are clustered as informative and uninformative us-108

ing features in the image frequency domain and k-means. Gray-level co-109

7



Learning-based classification of informative laryngoscopic frames

Blurred frame
Frame with 
  saliva
Underexposed 
  frame

Informative 
  frame

Feature extraction
(Sec. 2.1)

Classification
(Sec. 2.2)

 

 ∇2

Figure 3: Workflow of the proposed approach to automatic learning-based classification
of informative laryngoscopy frames.

occurence (GLCM)-based features and Gaussian mixture model are used110

in [34].111

A more advanced approach to uninformative frame removal, which is also112

the first attempt at using machine-learning for this aim, has been proposed in113

[35, 36]. The classification process exploits support vector machines (SVMs)114

trained on local color histogram features to discriminate between uninforma-115

tive frames with residual food and potentially informative frames.116

1.2. Aim of the work117

In this paper we specifically address the problem of robust and automatic118

classification of informative frames with applications in laryngoscopy. The119

proposed approach exploits the strong generalization power of machine learn-120

ing, overcoming issues related to the definition of threshold values to assess121

the quality of the image. Instead of focusing on the identification of just one122

class of uninformative frames, our approach is to extend the classification123

process to four classes (as to deal with all the typically encountered types of124

uninformative frames in NBI laryngeal endoscopic videos) namely:125
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• Underexposed frames (U)126

• Frames with saliva or specular reflections (S)127

• Blurred frames (B)128

• Informative frames (I)129

In addition to identify informative frames, being able to identify these130

classes of uninformative frames may help in:131

1. Processing initially excluded frames to increase frame quality132

2. Informing the clinician on the quality of images he/she is acquiring in133

real-time134

In the first case, post-processing algorithms could be used to increase bright-135

ness/contrast for underexposed frame or try to extract residual useful infor-136

mation from frames with saliva or specular reflections. In the second one, the137

clinician could perform corrective actions, e.g. increase the illumination level,138

move the endoscope slower to minimize motion blur, rinse the endoscope.139

The paper is organized as follows: the proposed approach to the learning-140

based classification of informative laryngoscopy frames is explained in Sec. 2.141

The materials used and the evaluation protocol are described in Sec. 3. Re-142

sults are presented in Sec. 4 and discussed in Sec. 5. Major strengths, limi-143

tations and future work are given in Sec. 6 to conclude this paper.144
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2. Methods145

In this section, we present a detailed description of the proposed approach146

to learning-based classification of NBI laringoscopy video frames. The feature147

extraction strategy is explained in Sec. 2.1, and the classification in Sec. 2.2.148

The workflow of the proposed approach is shown in Fig. 3.149

2.1. Feature extraction150

The aim of the classification features is to encode the main distinctive151

characteristics of the four frame classes. For each class, specific assumptions152

on the image content can be made. For instance, underexposed frames can153

be classified according to intensity-based features, since they contain high154

percentage of dark pixels (Fig. 2d). Informative frames have higher spatial155

frequencies content than blurred frames, due to the presence of sharp edges,156

such as blood vessels, as can be seen by comparing Fig. 2a and Fig. 2b.157

However, the presence of saliva or bubbles in the image creates similar com-158

ponents in the spatial frequency domain, too. Frames with saliva or specular159

reflections can be differentiated based on the color domain, as images with160

such content present high components in the green and blue color channels161

(Fig. 2c).162

In addition to such assumptions, features should be computationally163

cheap in order to minimize the effort with a view to real-time applications.164

Part of the feature set used in this work was borrowed from state of the165

art methods with application in medical imaging (such as [26], [29], [35]). In166
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Table 1: Tested feature vectors and corresponding number of features.

Descriptor Length
Blind/referenceless image spatial quality evaluator (BRISQUE ) [37] 1
Variance of the image Laplacian (∆V AR) 3
Sobel-Tenengrad focus evaluation function score (TEN ) [38] 3
Image entropy (ENTROPY ) 3
Local variance of the luminance channel intensity (VAR) 3
Image intensity variance (G VAR) 3
Image histogram (H ) 3
Number of detected keypoints (N P) 1
Total 20

addition, new features were included to make the classification robust to the167

laryngoscopy scenario.168

The set of features, which is summarized in Table 1, consisted of:169

• Blind/referenceless image spatial quality evaluator (BRISQUE ):170

The blind/referenceless image spatial quality evaluator (BRISQUE ) [37]171

is a no-reference image quality assessment holistic metric that operates172

in the spatial domain. To obtain BRISQUE, we first computed the173

image normalized luminance coefficient, i.e. mean-subtracted contrast-174

normalized luminance pixel values. Such coefficient were approximated175

by the asymmetric generalized Gaussian distribution (AGGD):176

f(x, α, σ1
2, σ2

2) =


a

(βl+βr)γ(1/α)
exp

(
−
(
−x
βl

)α)
x < 0

a
(βl+βr)γ(1/α)

exp
(
−
(
x
βl

)α)
x ≥ 0

(1)

where α is a shape parameter, σl, σr are scale parameters and γ, βl, βr177
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depend on α, σl, σr, as explained in [37]. BRISQUE was computed178

by regression on the computed AGGD parameters, using a regressor179

trained on non-distorted natural images as in the original work [37].180

• Variance of the image Laplacian (∆V AR):181

Since a high percentage of informative content (i.e., sharp edges, such182

as blood vessels and vocal fold borders) is encoded in high frequen-183

cies in the spatial frequency domain, a measure (∆V AR) based on the184

Laplacian (L) of the image I was used as feature, as suggested in [38]185

for autofocusing in light microscopy videos. Given I of size M × N ,186

∆V AR is computed as:187

∆V AR =
M∑
m

N∑
n

(L(m,n)− L̄)2 (2)

where L̄ is:188

L̄ =
1

MN

M∑
m

N∑
n

|L(m,n)| (3)

and L is obtained by convolving I with the Laplacian kernel (KL):189

KL =
1

6


0 1 0

1 −4 1

0 1 0

 (4)

• Sobel-Tenengrad focus evaluation function (TEN ):190
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The Sobel-Tenengrad focus evaluation function (TEN ) [38] is another191

measure typically used in microscopy autofocusing [39], based on the192

image gradient magnitude value. Being Gx, Gy the image gradient193

along the x and y direction, respectively, TEN is defined as:194

TEN =
M∑
m

N∑
n

[S(m,n)]2, for S(m,n) > T (5)

where T is a threshold and:195

S(m,n) =

√
[Gx(m,n)]2 + [Gy(m,n)]2 (6)

As to obtain Gx and Gy, I was convolved with the Sobel’s kernel (KS)196

and its transpose, respectively, where:197

KS =


1 0 −1

2 0 −2

1 0 −1

 (7)

• Image entropy (ENTROPY ):198

Image entropy (ENTROPY ) is an effective measure of the amount of199

information in an image [40]. Here, it was used as feature, as suggested200

in [41] for quality assessment of natural images:201

ENTROPY = −
∑
i

hi log2(hi) (8)
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where hi refers to the I histogram counts of the i ∈ [0, 255] bin.202

• Local variance of the luminance channel intensity (VAR):203

The frame edge content can be roughly assessed also from variations in204

the local intensity variance (V AR) [38]. V AR is defined as:205

V AR =
1

MN

M∑
m

N∑
n

[lv(m,n)− l̄v]2 (9)

where:206

lv(m,n) =
1

wxwy

wx∑
i

wy∑
j

[I(m+ i, n+ j)− Īw]2 (10)

l̄v =
1

MN

M∑
m

N∑
n

lv(m,n) (11)

and Īw is the mean intensity value on the window.207

• Image intensity variance (G VAR):208

In addition to the VAR local focus measure, a global intensity variance209

(G V AR) focus measure was computed. G V AR (Eq. 12) was used in210

addition to V AR to improve the feature robustness against noise.211

G V AR =
1

MN

M∑
m

N∑
n

[
I(m,n)− Ī

]2
(12)

where Ī is the mean intensity of all pixel in I.212
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• Image histogram (H ):213

Inspired by [35] and to include intensity-related features, the first quar-214

tile, median and third quartile of the image histogram were added to215

the feature vector.216

• Number of keypoints (N P):217

The number of keypoints in a frame is a trivial measure of information,218

as suggested in [26]. Here, oriented fast and rotated brief (ORB) [42]219

was used to detect keypoints in the gray-scale version of I. ORB is a220

fast binary descriptor, rotation invariant and robust to noise.221

∆V AR, TEN , ENTROPY , V AR ,G V AR and H were computed for222

each I color channel in the RGB space.223

Prior to feature extraction, anisotropic diffusion filtering [43] was used to224

lower noise while preserving sharp edges in NBI images [15].225

2.2. Classification226

To perform tissue classification, a support vector machine (SVM) was227

used [44]. The SVM kernel-trick prevents parameter proliferation, lower-228

ing computational complexity and limiting over-fitting. Moreover, the SVM229

decisions are only determined by the support vectors, which makes SVM230

robust to noise in training data. Here, the SVM with Gaussian kernel (Ψ)231

was used. For a binary classification problem, given a training set of N data232

{yk,xk}Nk=1, where xk is the kth input feature vector and yk is the kth output233

label, the SVM decision function (f) takes the form of:234
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f(x) = sign
[ N∑
k=1

a∗kykΨ(x,xk) + b
]

(13)

where:235

Ψ(x,xk) = exp{−γ||x− xk||22/σ2}, γ > 0 (14)

b is a real constant and a∗k is computed as follow:236

a∗k = max
{
− 1

2

N∑
k,l=1

ykylΨ(xk,xl)akal +
N∑
k=1

ak

}
(15)

with:237

N∑
k=1

akyk = 0, 0 ≤ ak ≤ C, k = 1, ..., N (16)

In this paper, the SVM parameters γ and C were computed with grid238

search and cross-validation, as explained in Sec. 3. To implement multi-class239

SVM classification, the one-vs-one scheme was used, assigning ambiguous240

test points to the nearest decision boundary. With the one-vs-one scheme,241

one binary SVM classifier was constructed for pairs of frame classes. For each242

binary learner, one class was considered positive, another was negative, and243

the rest were ignored. This design exhausted all combinations of class pair244

assignments. At prediction time, the class which received the most votes was245

selected.246

Prior to classification, the feature matrices were standardized.247
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Table 2: Evaluation dataset. For each video (video ID), and for each class (I, B, S, U),
the number of frames that contributed to build the dataset are reported. The dataset is
split in 3 folds to perform robust estimation of the classification performance. The folds
are balanced both at patient- and class-level. I: informative frame; B: blurred frame; S:
frame with saliva or specular reflections; U: underexposed frame.

video ID I B S U

F
ol

d
1

1 10 10 20 11
2 10 0 6 9
3 10 0 0 2
4 10 40 23 20
5 10 10 11 3
6 10 0 0 15

total 60 60 60 60

F
ol

d
2

7 10 28 19 0
8 10 8 21 5
9 10 3 10 10
10 10 21 10 16
11 10 0 0 14
12 10 0 0 15

total 60 60 60 60

F
ol

d
3

13 10 17 0 11
14 10 21 34 22
15 10 0 11 10
16 10 0 9 5
17 10 12 0 2
18 10 10 6 11

total 60 60 60 60

3. Evaluation248

In this study, 18 NBI endoscopic videos, referring to 18 different patients249

affected by SCC, were retrospectively analyzed (average video length: 39s).250

Videos were acquired with a NBI endoscopic system (Olympus Visera Elite251

S190 video processor and an ENF-VH rhino-laryngo videoscope) with frame252

rate of 25fps and image size of 1920× 1072 pixels.253

A total of 720 video frames, 180 for each of the four classes (I, B, S,254

U) was extracted and labeled from the 18 videos, see Table 2. For each255

video, video frames were randomly extracted and presented to two human256
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evaluators first. Then, the two evaluators were asked to label the frames. In257

case the two evaluators did not agree on the class, a third evaluator was asked258

to choose the ultimate class among the two proposed by the two evaluators.259

This process was repeated until all the 720 frames were extracted from the260

videos. For the manual labeling process, the following set of rules was defined:261

I frames should have an adequate exposure and clearly visible blood vessels;262

they may also present micro-blur and small portions of specular reflections263

(up to 10% of the image area). B frames should show a homogeneous and264

widespread blur. S frames should present bright white/light-green bubbles265

or blobs, overlapping with at least half of the image area. Finally, U frames266

should present a high percentage of dark pixels, even though small image267

portions (up to 10% of the image area) with over- or normal exposure are268

allowed.269

In addition, one of the videos was fully labeled (length = 17.64s; number270

of frames: I = 341, B = 7, S = 9, U = 84).271

All the frames underwent the pre-processing step described in Sec. 2.272

The anisotropic diffusion filtering parameters were set as in [43].273

From each frame, the features described in Sec. 2.1 were obtained using274

the following parameters:275

• BRISQUE: BRISQUE code was downloaded from the Laboratory276

for Image & Video Engineering website1 and the parameters were set277

1[http://live.ece.utexas.edu/research/quality/index.htm]
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as in [37]278

• TEN : the threshold T of Eq. 5 was set to 0, as suggested in [39] to279

include all pixels in the computation280

• V AR: to compute V AR, the local window size was 5× 5 pixels281

• N P : the parameters of ORB were set as in the original paper [42]282

As for performing the classification presented in Sec. 2.2, the SVM hyper-283

parameters (γ, C) were retrieved via grid-search and 10 fold cross-validation284

on the training set. The grid-search space for γ and C was set to [10−7, 10−1]285

and [10−3, 103], respectively, with seven values spaced evenly on log10 scale286

in both cases.287

The feature computation was implemented using OpenCV 2. The classi-288

fication was implemented with scikit-learn 3.289

3.1. Experimental setup290

To obtain a robust estimation of the classification performance of the291

frames reported in Table 2, 3-fold cross-validation was performed, separating292

data at patient level. We separated data at patient level to ensure that293

frames from the same class were classified due to features that are peculiar to294

that class, and not due to features linked to the patient itself (e.g. vocal fold295

anatomy). When the classification of the frames in fold 3 was performed, folds296

2[http://docs.opencv.org /3.1.0/index.html]
3[http://scikit-learn.org/stable/ index.html]
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1 and 2 were used to train the SVM. To retrieve the SVM parameters during297

the training phase, 10 fold cross-validation and grid-search were performed298

on the training set (i.e. using images from folds 1 and 2), as explained in299

Sec. 3. We did the same for testing the classification of frames in fold 1 and 2,300

using fold 2 and 3, and fold 1 and 3 for hyper-parameter tuning, respectively.301

We built a balanced dataset both at patient level and frame class level,302

as shown in Table 2. It can be noticed from Table 2 that, for some videos,303

selecting an equal number of frames for the four classes was not always pos-304

sible, especially for the uninformative ones. The reason is that either the305

videos could contribute only with ambiguous frames (i.e. frames with mixed306

characteristics among the four classes) or a sufficient number of frames was307

not available for all the classes. When this was the case, the other videos in308

the fold contributed to balance the number of frames. The approach followed309

to balance the dataset is common for studies with limited amount of data.310

A similar approach was followed, for example, in [35].311

In order to evaluate the classification performance, the class-specific recall312

(Recclass = {Recclassj}j∈[1,J=4]), the precision (Precclass = {Precclassj}j∈[1,J=4]),313

and the F1 score (F1class{F1classj}j∈[1,J=4]), were computed, where:314
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Recclassj =
TPj

TPj + FNj

(17)

Precclassj =
TPj

TPj + FPj
(18)

F1classj = 2
Precclassj ×Recclassj
Precclassj +Recclassj

(19)

being TPj the true positive of the jth class, FNj the false negative of the jth315

class , and FPj the false positive of the jth class.316

The area (AUC) under the receiver operating characteristic (ROC) curve317

was also computed. Since our task is a multi-class classification problem and318

the dataset was balanced, the macro-average ROC curve was computed.319

The computational time required to extract and classify the proposed320

features was computed, as well. Experiments were performed on a CPU321

Intel R© CoreTM2 Duo @ 2.26GHz with 8GB of available RAM; Linux oper-322

ative system, kernel 4.4.0-98-generic (x86 64) Ubuntu 16.04.3 LTS distribu-323

tion.324

We also investigated the use of feature selection. We applied principal325

component analysis (PCA) [45] to our feature set to retrieve a relevant set326

of features. We then performed the classification explained in Sec. 2.2. For327

the PCA implementation, principal components were retrieved as to explain328

the 99% of the variance encoded in the features.329

For the sake of completeness, the performances of random forest (RF) [46]330
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in classifying the proposed feature set were also investigated and compared331

with those obtained with SVM. The number of trees in the forest for RF was332

found with grid-search and cross-validation with a grid-search space set to333

[40,100] with six values spaced evenly.334

The SVM performance were compared also with those obtained using335

the features commonly exploited in the state of the art. As explained in336

Sec. 1.1.2, commonly exploited features are (i) image keypoints, (ii) intensity-337

based similarity score, (iii) color features and (iv) textural information. There-338

fore, we decided to compare our method with one research per feature cat-339

egory. We considered [26, 29, 35, 34], which use ORB keypoints, intensity-340

based similarity score, color histogram and GLCM, respectively. The pa-341

rameters for the state of the art methods implemented for comparison were342

set as reported in their reference papers: ORB parameters for [26], thresh-343

olding values for the intensity-based similarity score for [29], histogram bin344

number for [35] and orientation and radius for GLCM computation for [34].345

As stated in Sec. 1, such methods rely on thresholding instead of machine346

learning-based methods. However, the features from the state of the art were347

classified with SVM, for fair comparison.348

The Wilcoxon signed-rank test (significance level α = 0.05) for paired349

samples was used to assess whether the classification achieved with the pro-350

posed feature vector (reported in Table 1) significantly differs from the ones351

achieved with the state of the art feature sets and with the proposed fea-352

ture set using PCA. When significant differences were not found, the time353
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Figure 4: Confusion matrices with (left) and without (right) applying principal component
analysis to the proposed feature set. Frame classification was obtained with support vector
machines. Matrices refer to the classification of the balanced dataset of 720 narrow-band
imaging laryngoscopic video frames. The colorbar indicates the number of images.

required to extract the features was computed. We also used the Wilcoxon354

signed-rank test to assess if the performance of SVM and RF in classifying355

the proposed feature set was significantly different. In all cases, we performed356

the Wilcoxon signed-rank test by comparing the Recclass vectors.357

As for classifying the completely labeled video sequence, when training358

the SVM, all the frames from the three folds (excluding the ones relative to359

the specific analyzed video) were used, for a total of 689 training frames.360

4. Results361

With the proposed feature set and SVM classification, a median Recclass362

= 84% with inter-quartile range (IQR) = 9% was obtained (Table 3 bottom).363

It is worth noting that misclassification occurred mainly when classifying364

uninformative frames, while informative frames were classified with a recall365

of 91%. The relative confusion matrix is reported in Fig. 4 (right). From366

the ROC curve analysis (Fig. 5 left), a mean AUC of 91% was achieved.367
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Table 3: Classification performance of the proposed approach. Results are relative to
support vector machines (SVM) and random forest (RF) classification on the proposed
feature set. SVM results with principal component analysis (PCA) performed on the
feature set are reported, too. Class-specific recall (Recclass), precision (Precclass), and
F1 score (F1class) are reported for the four different frame classes. I: informative frame;
B: blurred frame; S: frame with saliva or specular reflections; U: underexposed frame.
Median and inter-quartile range (IQR) of the metrics are reported, too.

Proposed feature set and PCA + SVM

I B S U median IQR

Precclass 0.90 0.77 0.66 0.78 0.78 0.13
Recclass 0.89 0.72 0.66 0.84 0.78 0.18
F1class 0.90 0.74 0.66 0.81 0.78 0.16

Proposed feature set + RF

I B S U median IQR

Precclass 0.89 0.76 0.61 0.72 0.74 0.16
Recclass 0.78 0.73 0.59 0.86 0.76 0.16
F1class 0.83 0.75 0.60 0.78 0.77 0.13

Proposed feature set + SVM

I B S U median IQR

Precclass 0.91 0.76 0.78 0.76 0.77 0.09
Recclass 0.91 0.83 0.62 0.85 0.84 0.16
F1class 0.91 0.79 0.69 0.80 0.80 0.12
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Figure 5: Macro-averaging receiver operating characteristic (ROC) curve analysis. ROC
were obtained using support vector machines. No principal component analysis for feature
reduction was performed. The mean (± standard deviation) curves obtained from the 3
cross-validation folds are reported by the orange solid lines (gray area). The mean (±
standard deviation) area under the ROC curve is reported in the legend.

Figure 6: Comparison of the proposed feature set performance with the state of the art
feature performance. Classification was performed using support vector machines. No
principal component analysis for feature reduction was performed. Boxplots of class-
specific recall (Recclass) are reported. Stars indicate significant differences (Wilcoxon
signed-rank test (significance level α = 0.05) for paired samples).
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Table 4: Classification performance of the state of the art features using support vector
machines. Class-specific recall (Recclass), precision (Precclass), and F1 score (F1class)
are reported for the four different frame classes. I: informative frame; B: blurred frame;
S: frame with saliva or specular reflections; U: underexposed frame. Median and inter-
quartile range (IQR) of the metrics are reported, too. The parameters for the state of the
art methods implemented for comparison were set as reported in their reference papers:
oriented fast and rotated brief (ORB) parameters for [26], thresholding values for the
intensity-based similarity score for [29], histogram bin number for [35] and orientation and
radius for GLCM computation for [34].

Ref. [29]

I B S U median IQR

Precclass 0.31 0.61 0.30 0.33 0.32 0.09
Recclass 0.49 0.41 0.33 0.21 0.37 0.13
F1class 0.38 0.49 0.31 0.26 0.35 0.11

Ref. [26]

I B S U median IQR

Precclass 0.62 0.52 0.16 0.44 0.48 0.18
Recclass 0.61 0.90 0.02 0.51 0.56 0.30
F1class 0.62 0.66 0.04 0.47 0.55 0.27

Ref. [35]

I B S U median IQR

Precclass 0.53 0.59 0.51 0.55 0.54 0.04
Recclass 0.38 0.68 0.52 0.61 0.57 0.14
F1class 0.45 0.63 0.52 0.58 0.55 0.09

Ref. [34]

I B S U median IQR

Precclass 0.95 0.60 0.66 0.90 0.78 0.29
Recclass 0.95 0.73 0.52 0.90 0.81 0.30
F1class 0.95 0.66 0.58 0.90 0.78 0.31
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Figure 7: Classification performance of the proposed method for a complete video se-
quence. (a) Macro-averaging receiver operating characteristic (ROC) curve analysis. The
area under the ROC curve is reported in the legend. (b) Confusion matrix for a complete
video sequence. The colorbar indicates the number of frames. The number of frame for
each class is 341 (I, informative frame); 7 (B, blurred frame); 9 (S, frame with saliva or
specular reflections); 84 (U, underexposed frame).

The computational time for our feature set computation from one image was368

∼ 0.03s. The classification process took ∼ 10−5s.369

When applying PCA (Table 3 top, Fig. 4 left), no significant differences370

were found with respect to using non-reduced features (p-value > 0.05). Since371

SVM performances with and without PCA were comparable, we decided to372

exclude PCA from our analysis.373

When using RF (Table 3 middle) to classify our feature set, no significant374

difference (p-value > 0.05) were found with respect to SVM classification.375

When applying the algorithm presented in [29] to our dataset, a mean376

AUC = 67% was obtained (Fig. 5). Worse performance with respect to the377

proposed approach was achieved also by the method in [26] (mean AUC =378

81%) and in [35] (mean AUC = 82%), while [34] achieved a comparable value379

of AUC = 91%. The Recclass, Precclass, F1class values for [29] [26], [35] and380

[34] are reported in Table 4. The complete statistics of Recclass relative to381
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Figure 8: Visual confusion matrix for an entire laryngoscopic video sequence. Black boxes
indicate the absence of misclassification between the true and predicted label. Numbers
indicate the percentage of classified frames. I: informative frame; B: blurred frame; S:
frame with saliva or specular reflections; U: underexposed frame.

the comparison of the proposed method with the state of the art is reported382

in Fig. 6. The proposed approach significantly outperformed [26, 35, 29]383

(p-value < 0.05). Comparable performances (p-value > 0.05) were instead384

achieved using GLCM as in [34]. The execution time to extract GLCM-based385

features from a single image using the scikit-image implementation [47] on386

the machine described in Sec. 3.1 was ∼ 0.71s.387

Results relative to the automatic classification of the complete video se-388

quence with the associated gold standard classification are reported in Fig. 7.389

The ROC curve is reported (AUC = 0.89), as well as the confusion matrix.390
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Figure 9: Qualitative analysis of the classification outcomes. Each row shows examples
of frames from a video sequence. I: informative frame; B: blurred frame; S: frame with
saliva or specular reflections; U: underexposed frame.

The 83% of the I frames were correctly classified. To qualitative appreciate391

the classification results, a visual confusion matrix is shown Fig. 8.392

Visual samples of the classification performance for four videos are shown393

in Fig. 9.394

5. Discussion395

From the comparison with three state of the art methods, the proposed396

strategy proved to be a reliable and much better strategy for frame selection397

with respect to [26, 35, 29], with statistical evidence. Significant differences398

were not found when comparing the proposed performance with GLCM-399

based features [34]. However, it is worth noting that the GLCM computation400

time (∼ 0.71s) for one image was 1 order of magnitude higher than the401

computation time required to compute the proposed feature set (∼ 0.03s).402

This makes our feature set more suitable for the task of informative frame403

selection with respect to GLCM-based features considering that time is a404
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constraint with a view to real-time application. This is especially true if one405

considers that the computational time of computer-aided diagnostic systems406

must be eventually added. Moreover, compared with the state of the art,407

the proposed learning-based method is simpler, as it eliminates the issue of408

setting thresholding values (which is required by [15, 26, 29, 34]).409

The SVM performance did not vary when applying feature selection with410

PCA, suggesting that PCA can be avoided to avoid increasing computa-411

tional time. Significant differences between RF and SVM were not found, as412

expected considering results reported in the literature [48, 49, 50].413

When testing the proposed approach on a complete labeled video se-414

quence, the misclassifications occurred mainly for challenging frames, which415

were not trivial to classify also for humans (Fig. 8). I frames were never416

misclassified as B, while misclassification occurred with respect to U frames,417

especially when the area between vocal folds covered a large portion of the418

image, and to S frames, due to the presence in the frame of portions of419

leukoplakia, which is visually similar to specular reflections. It is worth not-420

ing that frames with leukoplakia were misclassified as uninformative only421

when in presence of specular reflections and saliva. An example of a frame422

that depicts a tissue with leukoplakia and that was correctly classified as423

informative is shown in Fig. 8 (top-left). Nonetheless, we recognize that424

the misclassification of informative frames is critical, as it could affect the425

judgment of diagnosis. Training on a larger set, which would include a wider426

range of laryngeal tissue conditions, should attenuate this issue. Moreover,427
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with a larger dataset, more advanced tools may also be investigated, such as428

convolutional neural networks, following the current trends in non-medical429

fields where large labeled dataset are available (e.g. [51, 52]). A further430

solution could be exploring classification confidence estimation, as recently431

investigated by the case-based reasoning community [53].432

A limit of the proposed approach could be seen in the dimension of the433

evaluation dataset. The number of frames of the balanced dataset used to test434

the proposed approach was limited to ∼700 images, to which ∼500 frames435

from the fully labeled video were added. Despite such number being much436

smaller than those available for the methods used for performance compari-437

son, namely [26] (∼3000 images) and [35] (∼22000 images), it has the same438

order of magnitude of other methods in the literature, such as [29] (∼300439

images). Moreover, it is worth noting that our dataset grants a more com-440

plete overview on the inter-patient variability, presenting a higher number of441

patients (18) compared to the 3 of [35], to the 2 of [26], and to the 6 of our442

own previous study [15], which exploited the state of the art method in [29].443

Therefore, to contribute to global research on laryngoscopic video analysis,444

we decided to make our dataset fully available online.445

Our evaluation protocol was focused on laryngeal video endoscopy, but446

we expect similar results for other anatomical districts, such as the gastroin-447

testinal and abdominal ones. We believe that the proposed methodology can448

be easily and successfully integrated as pre-processing step for several ap-449

plications, e.g. to provide informative sets of images for video stitching [8],450
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computer-aided diagnosis [54], tissue classification [55] and segmentation ap-451

plications [56].452

6. Conclusion453

In this paper, we addressed the challenging topic of informative frame454

classification in laryngoscopic videos. The method was retrospectively ap-455

plied to ∼1200 frames from 18 videos of 18 different subjects recorded during456

the clinical practice. With our experimental protocol, an overall median clas-457

sification recall of 84% among four frame classes (i.e. blurred, underexposed,458

with saliva or specular reflections, and informative frames) was achieved.459

Misclassification mainly occurred between classes of uninformative frames460

and informative video frames were classified with a recall of 91%. Such perfor-461

mances are significantly higher than those achieved applying other methods462

in the literature to our evaluation dataset. Moreover, the proposed approach463

is more robust, faster and simpler to implement since no parameter tuning is464

required. It is recognized that future work is required to further ameliorate465

the algorithm performance. However, the results obtained here are expected466

to provide major contribution towards lowering the degree of manual in-467

tervention required by computer-assisted systems intended to analyze and468

summarize the endoscopic video content and increasing their performance.469
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