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ABSTRACT
In recent years, there has been a growing interest in supporting
component-based software development of complex real-time em-
bedded systems. Techniques such as machine virtualisation have
emerged as interesting mechanisms to enhance the security of
these platforms, while real-time scheduling techniques have been
proposed to guarantee temporal isolation of different virtualised
components sharing the same physical resources. This combination
also highlighted criticalities due to overheads introduced by hyper-
visors, particularly for low-end embedded devices. This led to the
need of investigating deeper into solutions based on lightweight
virtualisation alternatives, such as containers. In this context, this
paper proposes to use a real-time deadline-based scheduling policy
built into the Linux kernel to provide temporal scheduling guar-
antees to different co-located containers. The proposed solution
extends the SCHED_DEADLINE scheduling policy to schedule Linux
control groups, allowing user threads to be scheduled with fixed
priorities inside the control group scheduled by SCHED_DEADLINE.
The proposed mechanism can be configured via control groups, and
it is compatible with commonly used tools such as LXC, Docker
and similar. This solution is compatible with existing hierarchical
real-time scheduling analysis, and some experiments demonstrate
consistency between theory and practice.
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1 INTRODUCTION
Component-based software design and development is awell-known
approach used in software engineering to address the complexity
of the applications to be developed and to improve the software
re-usability. Using this technique, complex software systems are
decomposed into components described by well-defined interfaces;
each component can be developed independently, and various com-
ponents can be integrated later on the hardware target platform.

When developing real-time applications, the “traditional” soft-
ware interface of each component must be complemented with
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non-functional attributes, e.g., those describing its timing require-
ments. In real-time literature, component-based design has been
supported by modelling a component-based application as a sched-
uling hierarchy, as done for example in the Compositional Schedul-
ing Framework (CSF) [14, 15], that has been extended to support
multiple CPUs and / or CPU cores in various ways [3–5, 8, 18].

In the past, these frameworks have been generally implemented
by running each software component in a dedicated Virtual Ma-
chine (VM) and using a hypervisor scheduler as the root of the
scheduling hierarchy [7, 9, 17]. In some situations (especially in
embedded devices), it can be interesting to reduce the overhead in-
troduced by a full VM, and to use a more lightweight virtualisation
technology such as container-based virtualisation.

This paper presents a CSF implementation based on containers
(specifically, Linux control groups and namespaces). To support CSF
analysis, this technology (on which many widely used programs
such as Docker, LXC, LXD and similar tools are based) has been ex-
tended by implementing a theoretically sound 2-levels scheduling
hierarchy. The SCHED_DEADLINE scheduling policy (implementing
the CBS [1] algorithm) is used as the root of the scheduling hi-
erarchy, and the standard fixed priority scheduler (SCHED_FIFO
or SCHED_RR scheduling policy) is used at the second level of the
hierarchy. The main difference with respect to previous implemen-
tations [6] is that the standard SCHED_DEADLINE code-base in the
mainline Linux kernel is extended, rather than reimplementing an
independent reservation-based scheduler.

The proposed approach is compatible with existing real-time
analysis (some experiments show that the obtained results are
compatible with MPR analysis [8], but different kinds of analysis
and design techniques can be used as well) and with commonly
used software tools, that do not need to be modified (an unmodified
LXC installation has been used for the experiments).

2 DEFINITIONS AND BACKGROUND
As previously mentioned, isolation among software components
can be achieved by running each component in a separate VM.
By using appropriate scheduling techniques, it is possible not to
limit isolation to spatial isolation, but to implement temporal iso-
lation too (meaning that the worst case temporal behaviour of a
component is not affected by the other components)1.

2.1 Virtualisation and Containers
The software components of a complex real-time application can
be executed in different kinds of dedicated VMs (a VM per compo-
nent), based on different virtualisation technologies and providing
different performance and degrees of isolation among components.
1While in clouds or large-scale servers temporal isolation is sometimes implemented
by dedicating entire CPU cores to components, in embedded systems the number of
available CPU cores is too small, and this solution is often not appropriate.
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For example, some VMs are based on full hardware virtualisation
whereas other VMs are based on container-based virtualisation (or
OS-level virtualisation).

When full hardware virtualisation is used, the VM software
implements and emulates all the hardware details of a real machine
(including I/O devices, etc.) and the guest OS running in the VM
can execute as if it was running on real hardware (in theory, any
unmodified OS can run in the VM without being aware of the
virtualisation details - but this is generally bad for performance,
and some kind of para-virtualisation is generally used).

When OS-level virtualisation is used instead, only the OS kernel
services are virtualised. This is done by the host kernel, which uses
virtualisation of its services to provide isolation among different
guests. This means that the kernel is shared between the host OS
and the guest OSs; hence all the guests have to be based on the same
hardware architecture and kernel. As an example, this technique
allows for using the same hardware platform to run multiple Linux
distributions based on the same kernel and it is often used to run
multiple Linux applications/containers on the same server (think
about Docker). Every distribution will be isolated from the others,
having the impression to be the only one running on the kernel.

The Linux kernel supports OS-level virtualisation through control
groups (also known as cgroups, a mechanism originally inspired by
resource containers [2]), and namespaces, that can be used to isolate
various kernel resources. User-space tools like Docker or LXC are
used to set-up the control groups and namespaces as appropriate
to execute guest OSs (or isolated applications) inside them.

Most of the previous implementations of the Compositional
Scheduling Framework focused on full hardware virtualisation,
directly executing guest machine language instructions on the host
CPUs to improve performance (and relying on special CPU features
to make this possible - more technically, to make the CPU fully
virtualisable [13]). The software responsible for controlling the
execution of guest code, the hypervisor, contains a scheduler that is
responsible for selecting the VM to be executed and implements the
root of the scheduling hierarchy. In previous works, this scheduler
has been modified to support real-time resource allocation [6, 17].

When using container-based virtualisation, on the other hand,
the host kernel is responsible for scheduling all of the tasks con-
tained in the various VMs, and implements the root of the sched-
uling hierarchy. Since the host scheduler can easily know if a
guest is executing a real-time task (using the POSIX SCHED_FIFO or
SCHED_RR policy) or not, it is easy to schedule only real-time tasks
through a CPU reservation (implemented by the SCHED_DEADLINE
policy) serving the VM. This is another advantage of container-
based virtualisation that will be discussed later.

2.2 Real-Time Scheduling
A real-time application can be built by integrating a set of com-
ponents, where each component C can be modelled as a set of
real-time tasks C = {τ1, ...τn }. A real-time task τi is a stream of
activations, or jobs, Ji, j (Ji, j is the jth job of task τi ) with job Ji, j
arriving (becoming ready for execution) at time ri, j and executing
for a time ci, j before finishing at time fi, j (the finishing time fi, j
depends on the arrival time ri, j and the scheduling decisions).

The Worst Case Execution Time (WCET) of task τi is defined as
Ci = maxj {ci, j }, while the period (or minimum inter-arrival time)
is defined as Ti = ri, j+1 − ri, j (or Ti = minj {ri, j+1 − ri, j }).

Each job is also characterised by an absolute deadline di, j , repre-
senting a temporal constraint that is respected if fi, j ≤ di, j . The
goal of a real-time scheduler is to select tasks for execution so that
all the deadlines of all the jobs are respected.

As previously mentioned, a component C is executed in a ded-
icated VM havingm virtual CPUs2 πk (with 0 ≤ k < m). When
container-based virtualisation is used, the host scheduler is respon-
sible for:

(1) selecting the virtual CPUs that execute at each time;
(2) for each selected virtual CPU, select the task to be executed.
In this paper, virtual CPUs are scheduled using a reservation-

based algorithm: each virtual CPU πk is assigned amaximum budget
(or runtime) Qk and a reservation period Pk , and is reserved an
amount of timeQk every Pk for execution. In more details, the CBS
algorithm [1] as implemented in the SCHED_DEADLINE scheduling
policy [10] is used (see the original papers for more details about
the algorithm and its implementation).

3 REAL-TIME FOR LINUX CONTAINERS
The solution presented in this paper is based on implementing a
hierarchical scheduling system in a way that is compatible with
the most commonly used container-based virtualisation solutions.
Unmodified LXC has been used for the experiments as an example
(because of its simplicity), but other tools can be used as well.

3.1 A Hierarchical Scheduler for Linux
Independently from the used user-space tool, container-based vir-
tualisation in Linux is implemented by combining two different
mechanisms: control groups (or cgroups) and namespaces; the user-
space tools like LXC and Docker are only responsible for setting
up the namespaces and cgroups needed to implement a VM.

Namespaces are used to isolate and virtualise system resources: a
process executing in a namespace has the illusion to use a dedicated
copy of the namespace resources, and cannot use nor see resources
outside of the namespace. Hence, namespaces affect the resources’
visibility and accessibility.

Control groups are used to organise the system processes in
groups, and to limit, control or monitor the amount of resources
used by these groups of processes. Hence, cgroups affect the re-
source scheduling and control. In particular, the real-time control
group can be used to limit somehow and control the amount of
time used by SCHED_FIFO and SCHED_RR tasks in the cgroup. Tra-
ditionally, it allows for associating a runtime and a period to the
real-time tasks of the control group (hence, it could potentially be
used for implementing a scheduling hierarchy), but its behaviour is
not well defined. Hence, the resulting scheduling hierarchy is not
easy to analyse; for example, it implements a runtime “balancing”
mechanism among CPUs3, it uses a scheduling algorithm similar

2If full hardware virtualisation is used, the number of virtual CPUsm can theoretically
be larger than the number of physical CPUs M ; if container-based virtualisation is
used,m ≤ M .
3 For more information, refer to the do_balance_runtime() function in https://github.
com/torvalds/linux/blob/master/kernel/sched/rt.c.

https://github.com/torvalds/linux/blob/master/kernel/sched/rt.c
https://github.com/torvalds/linux/blob/master/kernel/sched/rt.c
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to the deferrable server [16] algorithm (but not identical - hence
problematic for the analysis) and it has a strange behaviour for
hierarchies composed of more than two levels. Moreover, real-time
tasks are migrated among CPUs without looking at the runtimes
available on the various cores.

In our approach, we re-use the software interface of the real-time
control groups, changing the scheduler implementation to fit in the
CSF. A CBS-based reservation-based algorithm, SCHED_DEADLINE,
was already available in the mainline kernel, so we decided to use it
to schedule the control groups. Linux implements global scheduling
between available CPUs by using per-core ready task queues, named
runqueues, and migrating tasks between runqueues when needed
(for example, “push” and “pull” operations are used to enforce the
global fixed-priority invariant - the M highest priority tasks are
scheduled - between fixed priority tasks). For each CPU, there is a
runqueue for non-real-time (SCHED_OTHER) tasks, one for fixed pri-
ority tasks (the real-time runqueue) and one for SCHED_DEADLINE
tasks (the deadline runqueue). Each task descriptor contains some
scheduling entities (one for SCHED_OTHER, one for SCHED_FIFO /
SCHED_RR and one for SCHED_DEADLINE - the deadline entity) that
are inserted in the runqueues.

In our scheduler, we added a deadline entity to the real-time
runqueue associated with every CPU in a control group. This way,
the real-time runqueues of a control group can be scheduled by
the SCHED_DEADLINE policy. When SCHED_DEADLINE schedules a
deadline entity, if the entity is associated with a real-time runqueue,
then the fixed priority scheduler is used to select its highest prior-
ity task. The usual migration mechanism based on push and pull
operations is used to enforce the global fixed priority invariant (the
m highest priority tasks are scheduled).

The resulting real-time control group now implements a 2-levels
scheduling hierarchy with a reservation-based root scheduler and
a local scheduler based on fixed priorities: each control group is
associated with a deadline entity per runqueue (that is, per CPU),
and fixed priority tasks running inside the cgroup are scheduled
only when the group’s deadline entity has been scheduled by
SCHED_DEADLINE. Each deadline entity associated with a real-time
runqueue is strictly bound to a single physical CPU.

Currently, all the deadline entities of the cgroup (one per run-
queue / CPU) have the same runtime and period, so that the original
cgroup interface is preserved. However, this can be easily improved
if needed (for example, using an “asymmetric distribution” of run-
time and period in the cgroup cores can improve the schedulability
of the cgroup real-time tasks [11, 18]). On the other hand, if deadline
entities with different parameters are associated with the runqueues
of a cgroup, then the resulting container is characterised by virtual
CPUs having different speeds, so the push and pull operations need
to be updated.

This container-based implementation of a hierarchical scheduler
has an important advantage compared to full virtualisation: when
the runtime of a virtual CPU (vCPU) is finished and the vCPU
is throttled, the scheduler can migrate a real-time task from that
vCPU to others (using the “push” mechanism). With machine virtu-
alisation, instead, the guest OS kernel cannot know when a vCPU
is throttled and its tasks must be migrated to other vCPUs; hence,
it may throttle some real-time tasks while some other vCPUs still
have an available runtime that is left unused.

As an example, consider a task set Γ = {τ1,τ2}, with C1 = 40ms ,
T1 = 100ms ,C2 = 60ms , P2 = 100ms running in a VMwith 2 vCPUs
having runtimes Q1 = Q2 = 50ms and periods P1 = P2 = 100ms .
Assume that τ1 is scheduled on the first vCPU and τ2 is scheduled
on the second one. At time 40ms , the job of task τ1 finishes, leaving
10ms of unused runtime on the first vCPU, and at time 50ms the job
of task τ2 has consumed all the runtime of the second vCPU, hence
the vCPU is throttled. If the VM is implemented using traditional
hardware virtualisation, the guest scheduler has no way to know
that migrating τ2 on the first vCPU the job would still have some
runtime to use, while using the container-based approach the host
scheduler can push τ2 from the second vCPU of the control group
to the first one, allowing it to use the remaining 10ms of runtime
and hence to finish in time.

All the control groups are associated with well-specified run-
timesQi and periods Pi , and the SCHED_DEADLINE scheduling policy
enforces that the real-time tasks of a cgroup cannot use a fraction
of CPU time larger than Qi/Pi . Hence, we decided to implement
only a simple 2-levels scheduling hierarchy. Since the real-time
control group interface allows to build deeper hierarchies nesting
cgroups inside other cgroups, we decided to support this feature by
“flattening” deeper cgroup hierarchies: a cgroup with runtime Qi
and period Pi can contain children cgroups with runtimes Qi

k and
periods P ik only if

∑
k Q

i
k/P

i
k ≤ Qi/Pi . Every time a child cgroup

is created, its utilisation Qi
k/P

i
k is subtracted from the parent’s

utilisation Qi/Pi (technically, the parent’s runtime is decreased
accordingly) and the child cgroup is associated with a deadline
entity that is inserted in the “regular” SCHED_DEADLINE runqueue
(the same runqueue where the parent’s deadline entity is inserted).
In this way, the temporal isolation properties and the reservation
guarantees of each cgroup are preserved, while user-space tools
can still create nested cgroups (for example, LXC does not create
its cgroups in the root cgroup, but in a dedicated “LXC” cgroup).

3.2 Schedulability Analysis
The presented kernel modifications result in:

• 2 levels of scheduling (a root scheduler and a local scheduler);
• m vCPUs for each VM;
• reservation-based scheduling of the vCPUs (reservation-
based root scheduler): each vCPU πk is assigned a CPU
reservation (Qk , Pk );

• local scheduler based on fixed priorities.

This kind of scheduling hierarchies has already been widely studied
in real-time literature; hence, there is no need to develop new
analysis techniques, but previous work can be re-used. In particular,
Section 4 will show that the presented implementation provides
experimental results that are consistent with the MPR analysis [8].

According to theMPRmodel, each VM is assigned a total runtime
Θ every periodΦ, to be allocated over at mostm virtual CPUs; hence,
the VM is associated with a multi-processor reservation (Θ,Φ,m) to
be implemented asm CPU reservations. Using our implementation,
this corresponds to using a reservation period Pk = Φ and a runtime
Qk = ⌈Θ/m⌉ for each virtual CPU πk . Note that the original MPR
paper only analysed EDF-based local schedulers; however, the paper
mentioned that it is possible to extend the analysis to fixed priorities.
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Such an extension is already implemented in the CARTS tool [12],
that has been used to validate the experimental results.

3.3 Application-Dependent Analysis
As discussed, existing CSF analysis can be applied to container-
based hierarchical scheduler presented in this paper (and Section 4
will show that the scheduler provides results consistent with the
theory). However, this kind of analysis is often pessimistic, because
it has to consider the worst-case arrival pattern for the tasks ex-
ecuting in the container. If more information about the structure
of the containerised applications is known, then a less pessimistic
application-dependent schedulability analysis can be used.

For example, consider a simple scenario where a pipeline of
n audio processing tasks τ1, . . . , τn is activated periodically to
compute the audio buffer to be played back on the next period.
The activation period of the pipeline also constitutes the end-to-
end deadline D for the whole pipeline computations. This use-
case is recurrent for example when using common component-
based frameworks for audio processing, such as the JACK4 low-
latency audio infrastructure for Linux, where multiple audio filter
or synthesis applications can be launched as separate processes,
but their real-time audio processing threads are combined into a
single arbitrarily complex direct acyclic graph of computations.
For the sake of simplicity, in the following we consider a simple
sequential topology where the tasks τ1, . . . , τn have to be activated
one by one in the processing workflow (typical of having multiple
cascaded filters), and we focus on the simple single-processor case.

The traditional way to handle the timing constraints of the audio
tasks in this scenario is the one to deploy thewhole JACK processing
workflow at real-time priority. However, in order to let the audio
processing pipeline co-exist with other real-time components, one
possibility is to use the SCHED_DEADLINE policy, that allows to
associate a runtime Qi and a period Pi with each thread of the
pipeline (each task τi is scheduled with a CPU reservation (Qi , Pi )).

Therefore, one would apply a standard end-to-end deadline split-
ting technique, for example setting each intermediate deadline (and
period) Pi proportional to the worst-case execution time Ci of task
τi in the pipeline, while keeping the intermediate reservation bud-
get Qi equal to (or slightly larger than) Ci :{

Qi = Ci

Pi =
Ci∑n
j=1Cj

D.
(1)

This would ensure that each task τi in the pipeline gets Ci time
units on the CPU within Pi , where all of the intermediate deadlines
sum up to the end-to-end value D. The computational bandwidth
UDL needed for the whole pipeline is:

UDL =

n∑
i=1

Qi
Pi
=

n∑
i=1

Ci
Ci∑n
j=1Cj

D
= n

∑n
j=1Cj

D
. (2)

Using the container-based hierarchical scheduler, instead, it is
possible to configure the system with the same ease in terms of
schedulability guarantees, but in a much less conservative way.
Indeed, the pipeline tasks can simply be all attached to the same
group reservation (scheduling the threads with real-time priorities

4More information at: http://www.jackaudio.org.

and inserting them in a dedicated cgroup) with runtime equal to the
overall pipeline processing time Q =

∑n
j=1Cj , and a period equal

to the end-to-end deadline constraint P = D, achieving an overall
computational bandwidthUHCBS of simply:

UHCBS =
Q

P
=

∑n
j=1Cj

D
=
UDL
n
, (3)

namely n times smaller than needed when associating a CPU reser-
vation for each task of the pipeline.

However, in the most straightforward set-up where the tasks
in the pipeline execute strictly one after the other5, it is clear that,
even under SCHED_DEADLINE, the whole pipeline can execute with
a much lower real-time bandwidth occupation. Indeed, once a task
is finished, it blocks after unblocking the next task in the pipeline.
As a consequence, only one of the real-time reservations is needed
at each time, throughout each activation of the whole pipeline.
Therefore, it is sufficient to have a single reservation occupying
a bandwidth sufficient for hosting the computationally heaviest
task (Qi/Pi turns out to be a constant anyway, following the above
deadline splitting technique in Eq. (1)), and resetting its runtime and
deadline parameters forward, following the (Q1, P1), . . . (Qn , Pn )
sequence, as the processing across tasks moves on. However, albeit
convenient, such a “reservation hand-over” feature is not avail-
able in SCHED_DEADLINE, and, as shown below, its effect is actually
achieved equivalently by the hierarchical scheduler here proposed.

4 EXPERIMENTAL RESULTS
The hierarchical scheduler for Linux presented in this paper has
been evaluated through a set of experiments. The patchset used for
these experiments is freely available online6. The experiments have
been performed on different machines, with different kinds of CPUs
including an Intel(R) Core(TM) i5-5200U and an Intel(R) Xeon(R)
CPU E5-2640, achieving consistent results, with CPU frequency
switching inhibited and Intel Turbo Boost disabled.

4.1 Real-Time Schedulability Analysis
A first experiment has been designed to show one of the advantages
of the proposed approach, with respect to traditional full hardware
virtualisation. To achieve this result, a container-based VM has
been started using LXC. The VM has been configured with 4 virtual
CPUs, with runtime 10ms and period 100ms . When starting a CPU-
consuming task (basically, an empty while() loop) in the VM, it has
been possible to see that the task was able to consume 10% of the
CPU time on each virtual CPU. This happens because when the task
consumes the whole runtime on a virtual CPU, the corresponding
deadline entity is throttled, and the task is migrated to a different
virtual CPU, where it is able to consume other 10ms of runtime.

This experiment shows that using our hierarchical scheduler the
guest’s real-time tasks can effectively consume all the runtime allo-
cated to all the virtual CPUs of the VM. When using full hardware
virtualisation, instead, this is not possible. For verification, the same

5JACK can be configured to execute tasks in a real “pipelined” fashion, where multiple
tasks are activated at the same time on different pieces of the overall audio buffer
being processed.
6 https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches, applies
to the master branch of the Linux tip repository (git://git.kernel.org/pub/scm/linux/
kernel/git/tip/tip.git), as checked out at end of June 2018 (commit f3a7e2346711).

http://www.jackaudio.org
https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git
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Figure 1: CDF of the normalised response times obtained us-
ing LXC and kvm.While the worst case response time is the
same, LXC provides better average response times (the LXC
CDF is above the kvm CDF).

experiment has been repeated in a kvm-based VM7 scheduling the 4
virtual CPU threads with SCHED_DEADLINE [10] (runtime 10ms and
period 100ms for each thread), verifying that the CPU-consuming
task is able to consume only 10% of the CPU time of one single
virtual CPU. This happens because when a virtual CPU thread con-
sumes all the runtime, it is throttled, but the guest scheduler does
not migrate the thread because the guest scheduler has no way to
be notified when the virtual CPUs are throttled.

In the second experiment, the presented hierarchical scheduler
has been verified to correctly implement CSF. Different components
C with different utilisations

∑
i
Ci
Ti have been generated, using the

CARTS tool (downloadable from https://rtg.cis.upenn.edu/carts/)
to derive some (Θ,Φ,m) parameters that allow for scheduling the
component tasks without missing deadlines. Then, the component
has been executed in an LXC container (using a minimal Linux-
based OS designed to allow reproducible experiments in virtualised
environments), verifying that no deadline has been missed.

For example, the task set Γ = {(2, 32), (2.88, 40), (11.6, 46),
(9.125, 48), (0.7555), (17.362), (14.5, 90), (2.6, 103), (4.5, 261), (67, 270),
(34.3, 275), (4.45, 283), (8.55, 311), (47.4423), (97.4, 490)} (where
(Ci ,Ti ) represents a periodic task with WCET Ci and period Ti ,
in ms) is schedulable on 4 virtual CPUs with MPR parameters
(Θ = 30ms,Φ = 10ms,m = 4). When executing such a task set
in an LXC container with 4 CPUs, runtime 7.5ms and period 10ms ,
no deadline has been missed indeed.

The experimental Cumulative Distribution Function (CDF) of the
normalised response times (where the normalised response time
ri, j/Ti of a job is defined as the job’s response time divided by the
task period) is represented in Figure 1. For comparison, the figure
also contains the experimental CDF obtained when running the
same task set Γ in a kvm-based VM (with each one of the 4 virtual
CPU threads scheduled by SCHED_DEADLINE, with runtime 7.5ms
and period 10ms). From the figure, it is possible to appreciate 3
different things. First of all, both the VMs are able to respect all the
deadlines: this can be seen by verifying that both the curves arrive
at probability 1 for values of the normalised response time ≤ 1 (if

7Other virtualisation solutions use different kinds of hypervisors - for example, Xen
uses a bare-metal hypervisor - but the results do not change.

Table 1: JACK experiment parameters

JACK clients Ci 290µs
(i = 1, 2) Pi 1319.32µs
jackd C3 58.05µs

P3 263.86µs
Interference C4 = Q4 6667µs

P4 16667µs

the normalised response time is smaller than 1, the deadline is not
missed). Second, the worst-case experienced normalised response
time is similar for the two VMs: the two curves arrive at probability
1 for similar values of the worst-case response time. This means
that the worst-case behaviour of the two VMs is similar, as expected.
The last thing to be noticed is that the LXC curve is generally above
the kvm one. This means that in the average case the response times
of the container-based hierarchical scheduler are smaller than the
one of the kvm-based one, because of the para-virtualised nature
of the container-based scheduler (as previously mentioned): when
a virtual CPU is throttled, the scheduler can migrate its tasks to a
different virtual CPU that still has some runtime to be exploited.

4.2 Audio Pipeline
The third experiment shows the advantages of using the container-
based hierarchical scheduler for the management of a real-time
JACK audio processing workflow, with respect to the approach of
isolating each activity in a separate CPU reservation by scheduling
all the JACK threads as SCHED_DEADLINE [10]. In this experiment,
2 JACK clients are sequentially chained. The first one takes as input
stream the input data of the audio device, performs some computa-
tions and forwards it to the next client, until the last one. Actual
audio I/O through ALSA is performed by jackd, the JACK audio
server, which constitutes an implicit 3rd element in our sample au-
dio processing pipeline. JACK has been configured with a buffer size
of 128 audio frames with a sample rate of 44100 frames/s, resulting
in a total audio latency of 1000/44100 ∗ 128 = 2.9025ms (corre-
sponding to the period of the audio pipeline). The JACK clients
performed a synthetic audio processing activity with nearly con-
stant execution time. The overall JACK real-time workload added
up to a 22% CPU load on the CPU. Also, an additional interference
load has been added, as an additional 4th real-time activity using a
40% CPU reservation. All real-time tasks have been pinned down
on the same CPU, in order to reproduce the assumptions behind
the calculations in Section 3.3. All the parameters for all real-time
tasks and associated reservations have been summarised in Table 1.

The performance of JACK in terms of experienced xruns have
been measured when the JACK threads are scheduled under the
mainline SCHED_DEADLINE policy (indicated as “DL” in the figures)
and when the hierarchical control group scheduler (indicated as
“HCBS” in the figures) is used. First, the 3 real-time threads belong-
ing to the JACK audio processing pipeline from the 2 JACK clients
and jackd itself, have been scheduled with SCHED_DEADLINE using
the parameters obtained from the deadline splitting approach in
from Eq. (1). As expected, using these parameters no xruns were
experienced. Since Eq. (1) can end up in an over-allocation of CPU

https://rtg.cis.upenn.edu/carts/
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Figure 2: Number of xruns reported by JACK throughout
all the 10 repetitions of each configuration. The proposed
control group scheduler (HCBS) requires a smaller percent-
age of CPU time than standard SCHED_DEADLINE (DL) to avoid
xruns.

time, the test has been repeated reducing the SCHED_DEADLINE
runtimes. In practice, the Qi parameters have been rescaled pro-
portionally, so that the fraction of CPU time reserved to the three
threads ranged from 15% to 35%. The DL line in Figure 2 reports the
results, highlighting that the system starts behaving correctly when
the percentage of CPU time reserved to the three JACK threads is
about 31%. This is well below the conservative theoretical bound in
Eq. (2), as expected from the arguments at the end of Section 3.3.

After using the standard SCHED_DEADLINE policy to schedule
the JACK threads, the test was repeated running JACK within an
LXC container, so the whole set of JACK real-time threads have
been scheduled within a hierarchical reservation. The period of the
reservation was set to 2.9025ms , and runtime varied around the
ideal valueQ =

∑3
i=1Ci = 638.05µs ( 21.98% of real-time bandwidth

utilisation), so as tomatch a real-time utilisation from 15% to 35%. As
visible from the HCBS line in Figure 2, there are no xruns for a real-
time utilisation of 21%, closely matching theoretical expectations
from Eq. (3). This value is significantly below the experimental
threshold found above when using the original SCHED_DEADLINE.

Therefore, our experimental results confirm the increased ease
of use and efficiency in the use of the real-time CBS computational
bandwidth when using our proposed control group scheduler, com-
pared to the original SCHED_DEADLINE scheduler.

5 CONCLUSIONS
This paper presented a new hierarchical scheduler for Linux, de-
signed to support container-based virtualisation so that it fits in
the CSF, that can be conveniently used with LXC containers having
multiple virtual CPUs. The presented scheduler is implemented
by modifying the real-time control groups mechanism so that the
SCHED_DEADLINE policy is used underneath to schedule the real-
time runqueues of each cgroup.

Experimental results show that a real-time application sched-
uled within an LXC container under the new scheduler behaves as
predicted by existing theoretical CSF analysis. Also, in a realistic
use-case involving the use of reservation-based CPU scheduling for
guaranteeing CPU time to an audio processing workflow, our con-
trol groups scheduler proved to be easier to configure and achieved
better results, with the potential of occupying a lower real-time

computational bandwidth within the system, for preventing the
occurrence of xruns.

In the future, we plan to make a more in-depth experimenta-
tion of the proposed scheduler in the context of parallel real-time
activities deployed in multi-CPU containers.
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