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Abstract—This paper is concerned with modeling of
smart textiles, aimed at compensating their intrinsic nonlin-
earities. In particular, a new model is proposed to compen-
sate for hysteresis and relaxation in strain sensors made
of Electrolycra. These sensors are increasingly employed
in emerging areas such as wearable electronics and soft
robotics for their simple transduction mechanism and low
cost. However, being intrinsically nonlinear, the signals
measured from these devices need some processing, in
order to increase their sensing accuracy. Here, we propose
a new model for the compensation of the main distortions
intrinsic to these soft sensors, which are mainly caused
by hysteresis and relaxation, whose combined effect pro-
duces rate-dependent hysteresis. The model capabilities
are tested on experimental data measured on Electrolycra.
The comparisons with the results obtained with two dif-
ferent models witness the good behavior of the proposed
model.

Index Terms—Conductive textile, piezoresistive strain
sensor, rate-dependent hysteresis, hysteresis compensa-
tion.

|. INTRODUCTION

TRAIN gauge sensors have been widely used in robotics
[1], [2] for their mechanical and electrical simplicity,
compact form and cost effectiveness, providing relatively high
accuracy for measuring small strains [3]. However, their mea-
surement range is limited by the material of conventional strain
gauges, thus making them unsuitable for soft structures that
are subject to large deformations. Recent interest in wearable
electronics [4], human/machine interfaces [5], soft exosuits
[6], and soft robots [7], [8], led to the development of a new
class of soft strain sensors that can be both highly conformable
and extensible.
A popular approach to create flexible and highly stretchable
strain sensors is to mix conductive additives to soft silicone
rubber materials [9]. These sensors can support very large
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clongations and typically have relatively high gauge factors
[10]. However, the resistance variation is dominated by com-
plex effects such as quantum tunnelling [11], that are difficult
to master. This limitation has motivated the development
of highly stretchable sensors composed of hyperelastic elas-
tomers with embedded microchannels filled with a conductive
liquid, such as eutectic gallium-indium (eGaln) [12]. Although
these sensors offer relatively high accuracy, reliability for
measuring large strains, and less hysteresis, the conductive
liquid metal material is expensive and the fabrication process
requires manual skills or custom printing hardware to obtain
a correct injection of the liquid into the intricate channels of
the soft body [13].

Another approach is the use of capacitive-type sensors [14],
[15], which typically employ a highly compliant dielectric
layer sandwiched between two stretchable electrodes. Tensile
strain brings the electrodes closer and results in an increase
of capacitance [16]. However, design and fabrication require a
complex tuning of many material properties, such as dielectric
constant, dielectric loss, and mechanical properties [7].

Sensing solutions based on smart textiles can provide a valid
alternative as soft strain sensors. Indeed, textile-based solu-
tions have several advantages: low cost, lightness, flexibility
and capacity to adapt to different body structures [17]. Smart
textiles are fabrics that can sense and react to mechanical,
thermal, chemical, magnetic and electric stimuli, by means of
extrinsic and intrinsic modifications [18].

Piezoresistive sensor technology [19] is a common method
for creating textile-based strain sensors along with capacitive
[20], inductive and impedance sensors [21]. Usually, piezore-
sistive strain sensors exploit the electrical resistance change
due to an applied mechanical stretching, but they present
remarkable electro-mechanical hysteresis and relaxation dy-
namics. This is known as a major drawback of resistance-type
sensors, which can limit severely the applicability of these
materials as sensors. Friction force and structural changes in
the material are reported as the main causes of this undesirable
behavior [22]. Several methods have been proposed to reduce
the impacts of these factors [23], [24], but compensation
through mathematical modeling is unavoidable to improve the
stretch sensing accuracy. Hysteresis compensators based on
a modified dynamic Preisach model [25] or on a semilinear
Duhen model [26] were applied on strain sensors made of
conductive polymer nanocomposites, but with limited results
in terms of performance and generalizability. More in general,
methods to compensate for hysteresis and relaxation effects
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are available in literature: the interested reader can refer to
[27] for a survey about pros and cons of different models and
compensators and to [28] for a survey focused on nanoposi-
tioning applications, where relaxation (known as creep in this
context) plays an important role.

We present a thorough experimental investigation prob-
ing the electromechanical response of a conductive textile
subjected to cyclic loading and we propose a new model
to compensate for its intrinsic nonlinearities, thus improving
its sensing accuracy and paving the way to precise strain
measurement in soft highly stretchable sensors. The new
model is a variant of a power-law (PL) model recently pro-
posed [29] to reproduce hysteresis and creep in piezoelectric
actuators (PEAs), which are largely used for micro- and nano-
positioning applications [30], [31]. In this work the PL model
is properly modified in order to compensate for the rate-
dependent hysteresis of the conductive textile. The model can
be exploited to accurately estimate the strain of the textile,
given the measurement of its electrical resistance and is valid
at different strain rates. The model parameters are identified
on a set of experimental data and its accuracy is validated
on a different set. We also benchmarked the results obtained
with our model against both the MPI model and an algebraic
model that relates strain and resistance through a third-order
polynomial.

The rest of this paper is organized as follows. Section
IT describes experimental setup, measurement protocol and
proposed model. Compensation results are presented and dis-
cussed in Sec. III, before drawing some conclusions in Sec.
Iv.

Il. MATERIALS AND METHODS
A. Experimental setup

Among the available possibilities on the market, the Elec-
trolycra (Mindsets Ltd, United Kingdom) has been selected
for this study. Previous works have adopted Electrolycra as a
strain sensor in several applications such as the sensorisation
of continuum soft robots for reconstructing their spatial con-
figuration [8], or to reveal bending and force in a soft body
[32], or as a wearable goniometer [33], [34].

Electrolycra looks and feels like ordinary lycra but it is
highly conductive because it is weaved with silver plated
76% nylon 24% elastic fibers [8]. Its conductivity depends
on how tightly it is stretched; if it is stretched, its resistance
R increases.

In particular, we are interested in the relationship between
strain S = 100Lz—f”% and resistance R, where L is the
current sample length, whereas Ly is the sample resting length.
Electrolycra can be stretched beyond its initial length, with
better performances after pre-stretching of 200% [33]. More-
over, this material has a preferential direction along which
resistance significantly changes and a major strain is possible,
with a working range of strain S from 0% to 50%. Additional
tests were performed for the present work to better understand
Electrolycra electromechanical behavior and to validate the
developed model with new experimental datasets. The electro-
mechanical tests were performed at room temperature by using

the Instron material testing machine (model 4464, Instron Inc.,
Norwood, MA), which allows imposing a desired strain to the
textile. Each end of the sample was fixed mechanically using
clamps with copper sheets and welded wires. These wires
were connected to a data acquisition board (DAQ, National
Instruments®) to measure the electrical resistance values,
which were simultaneously recorded for different strains with
a sampling frequency of 10 Hz. The resistance value R,
in particular, is measured by means of a voltage divider,
composed of the Electrolycra and a resistor with resistance
Ry = 10.59Q connected in series, with an applied voltage
Vin = 3.2V. The resistance of the Electrolycra is therefore
computed as R = R, Vv—;‘l/’”*l, being Vg1 the voltage across
resistor .

Due to material preferential direction [8], [33], uniaxial
cyclic strain tests have been conducted along this direction on a
specimen 20mm wide and with length Ly = 100mm along the
preferential direction. The dimensions of the specimen were
chosen arbitrarily, as the sensor behavior depends only slightly
on the length-width ratio [33].

B. Experimental protocol

We collected 13 datasets of applied strain .S and correspond-

ing resistance R, belonging to three different classes:

« Different strain patterns (datasets SP1, SP2 and SP3):
three strain profiles composed of pieces of triangular
waves with 5 periods each (see Fig. 1). The sample is
stretched at a constant rate of S0mm/min. In SP1 each
piece is characterized by a different offset (10%, 20%,
20% and 30%) and amplitude (20%, 20%, 30% and 20%);
in SP2 the offset is constant (10%) and only the amplitude
changes (10%, 20%, 30% and 40%); in SP3 the amplitude
is constant (20%) and the offset changes (10%, 20% and
30%).

o Different strain rate (datasets from SR1 to SR9): nine
strain profiles composed of triangular waves. For each
dataset, the sample is stretched at a different rate, from
20mm/min (SR1) to 100mm/min (SR9), with an increas-
ing step of 10mm/min. Fig. 2 shows the time evolution
of strain and resistance (left panels) and the relationship
between S and R (right panel) for datasets SR1 and
SR9. The other datasets, not shown to improve the
visibility of the graph, are distributed among the curves
of datasets SR1 and SR9. Notice that this relationship is
hysteretic and, as the strain rate increases, the loop rotates
counterclockwise around its low-left corner. Moreover,
each loop is traveled clockwise, as marked by the arrows
in Fig. 2. These datasets allow to evaluate the influence
of the strain rate on the sensor characteristics.

« Relaxation behaviour (dataset RB1): in this case the
sample was stretched at a speed of 1000mm/min, and
held at increasing values of strain (10%, 20%, 30%,
40%, and 50%) for 30 seconds (see Fig. 3). Notice
the temporal decrease (relaxation) of the resistance in
response to a constant strain applied to the sensor. This
effect is particularly visible when the textile is stretched
(black ellipse), whereas it is negligible when the textile
is relaxed (gray ellipse).
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Fig. 2. Measurements of applied strain (left bottom panel) and corre-
sponding resistance (left top panel) as a function of time for datasets
SR1 (gray curves) and SR9 (black curves). The right panel shows the
same measurements in the (S, R) plane.

C. Hysteresis model

In order to accurately employ the Electrolycra as a strain
sensor, .S must be estimated based on the measurement of the
resistance R. An inverse model (simply referred to as model,
in the following) able to reproduce both the hysteresis char-
acteristic and the relaxation dynamics, is therefore necessary,
which takes in input the measured resistance R and provides
an estimation S of the corresponding strain S. To estimate the
strain, the model must be connected in cascade to the sensor,
as shown in Fig. 4.

The model must be able to compensate for the typical
nonlinear behaviors of Electrolycra:

24}
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Fig. 3. Measurements of applied strain (bottom panel) and corre-
sponding resistance (top panel) as a function of time for datasets RB1.
Notice (see the black ellipse) the relaxing behavior of the resistance in
response to a constant strain, when the textile is stretched.
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Fig. 4. Block scheme showing how to connect the model to the
Electrolycra in order to estimate the strain S based on the measurement
of the resistance R.

1) the relationship between Electrolycra input S and output
R is hysteretic, and the hysteresis loop is traveled clock-
wise;

2) the hysteresis loop rotates counterclockwise around its
lower-left corner as the strain rate increases;

3) in the presence of a constant strain, Electrolycra resis-
tance slowly drifts (relaxing dynamics);

4) the relaxation is negligible for up-down strain steps.

Here, we propose a new model, henceforth called asymmet-
ric power-law model (APL) for the reasons detailed in Ap-
pendix, able to compensate for these behaviors. The normal-
ized version of model input R and output S are §=R/Ry+a
and 9 = S /So + B, respectively, where parameters a, [, Ro
and Sy are chosen so that the dimensionless quantities & and
¢ range in the interval [—1,1].

The model is composed of a set of N elementary hys-
teretic cells each one characterized by a state variable xy
whose dynamics is defined through the implicit formulation
hi(zg, Tk, t) =0, k =1,..., N. Functions hy are defined as

follows:
hk(-rk7£tk7t) =
- (5 D) pf;(f)“) if —1<&t) - < pr
=Nz — t if 2, <0
l‘k—f(t)-l-pk iftr >0

1)

where pp = NQ—_’il —1(k=1,...,N) are thresholds equally
spaced in the range (—1,1). Parameters ¢ > 0 and p > 0
determine the shape of the nonlinear vector field. In particular,
T = o for &€ — x), = pi, whereas p determines the curvature
of the vector field for —1 < { —zp < pg (e.g., for p =1 we
obtain a straight line). A qualitative example of vector field is
shown in Fig. 5 (left panel).
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Fig. 5. Vector field (left panel) and hysteresis loops at different input
rates (right panel) of the k-th cell of the APL model. In the left panel,
curve colors become darker as the input rate increases.

]

t

Fig. 6. Left panel: hysteresis loops 1 vs £. Curve colors become darker
as the input rate increases. Right panels: applied input (top) and APL
model output (bottom).

The model output 1/ is computed as:

N
Y(t)=f" (woé + > wiwy + qu+1> )

k=1

where f is assumed to be a strictly-increasing piecewise-affine
(PWA) function, defined as a weighted sum of an odd number
M of PWA basis-functions ¢;(j =1, ..., M) [29]:

M
f) = Z 11595 (1)) 3)

Coefficients wy, (k =0,...,N+1)and p; (j =1,..., M) are
obtained by solving a quadratic programming problem based
on experimental measurements of model inputs and outputs.

By applying a high-frequency triangular input &, the rela-
tionship between the state zj of the k-th APL cell and the
input £ is the trapezoidal hysteresis loop shown in black in
Fig. 5 (right panel). As the rate of the input increases, the loops
are hinged at the lower-left corner. By summing states x, as in
Eq. (2), it results (see Fig. 6, left panel) that the hysteresis loop
between the model output ¢ and € is traveled counterclockwise
(see arrows) and rotates clockwise around its lower-left corner
as input rate increases. This allows to compensate for the
Electrolycra’s nonlinearities. The right panels in Fig. 6 show
instead the response (bottom panel) of the model to a step-
wise input (top panel). Notice that the relaxation dynamics is
exhibited only for increasing input steps.

Model parameters are N, M, o, p, wg, and u; and can be
optimized with a procedure completely similar, mutatis mutan-
dis, to the one proposed in [35] for the model of piezoelectric
materials reported in Appendix for ease of comparison.

TABLE |
APL AND MPI MODEL PARAMETERS.
APL model MPI model
k,j | wip(x107%) [ p;(x10%) || wr(x10=%) | p;(x10%)

0 2.523 1.483

1 0.843 0.412 0.510 0.518
2 1.522 0.014 0.808 -0.143
3 0.522 0.092 0.337 0.295
4 0.513 0.190 0.220 0.506
5 0.002 1.405 0.233 2.516
6 0.022 0.293 0.102 0.692
7 0.041 0.056 0.070 0.131
8 0.106 0.716 0.043 0.841
9 0.276 -0.160 0.038 -0.367
10 0.457 0.068
11 0.695 0.070
12 3.827 0.026

I1l. RESULTS AND DISCUSSION

We added the APL model to the MATLAB toolbox HysTool
[36], which automatically fits its parameters to experimental
data. We chose to use as training set the datasets SP1, SRI,
SR4, SR7, SR9, whereas the other sets are used for validation
purposes. The model inputs & and outputs 1 have been
obtained by normalizing the values of R and S contained in
the training set, with Ry = 7.16Q), o = —2.61, Sy = 25%
and B = —1. Through HysTool we set N =11 and M =9 (a
further increase of their values does not decreases significantly
the estimation error), o = 2.15-10~2 and p = 0.73. The other
fitting parameters (obtained by solving a quadratic problem)
are listed in Tab. I (left columns).

HysTool has been also used to fit the MPI model (already
implemented in the tool), in order to perform a comparison
with the solution adopted in [37]. As shown in the Appendix,
the MPI model relies on the same parameters of the APL
model, with the exception of o and p. By setting a priori
N = 11 and M = 9, the resulting optimal parameters are
listed in Tab. I (right columns).

A third model (used as benchmark also in [37]) has been
considered, which simply expresses the strain as a cubic (CU)
function of the resistance, by neglecting the hysteresis:

S =c3R®+caR* + 1R + ¢ 4
Coefficients cy, . . ., c3 are obtained through least squares opti-
mization on the considered data, leading to cg = —69.5,¢; =

7.816907 1 ¢y = —0.2112Q72 and c3 = 0.003512Q 3.

Fig. 7 shows the root mean square error (RMSE) obtained
with the APL, MPI and CU models on all the 13 available
datasets, being t; (kK = 1,..., K) the sampling times. The
RMSE is defined as

K

RMSE = . % 3 (S‘(tk) - S(tk))2 )

k=1

As expected, the CU model leads to larger errors, since it does
not represent hysteresis, whereas the APL model outperforms
in most cases the MPI model, as it is able to reproduce rate-
dependent effects. In the following sections, more detailed
results are shown for each class of datasets.
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Fig. 7. RMSE obtained on all the 13 datasets employing APL model
(blue curve), MPI model (red curve) and CU model (green curve).
Squares mark the datasets used also to train the models.
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Fig. 8. Time evolution of e(t) = |S(t) — S(¢)| for dataset SP2 (top panel)
and SP3 (bottom panel) with APL (blue), MPI (orange) and CU (green)
model.

A. Different strain patterns

On datasets SP1, SP2 and SP3 the performances of the APL
and MPI models are comparable. Indeed, in these datasets
the strain rate is constant, and therefore also the MPI model
(which only models rate-independent hysteresis) is accurate.
The absolute error e(t) = |S(t)—S(t)| as a function of time on
datasets SP2 and SP3 (not used to train the model) is shown in
Fig. 8, confirming that the accuracies of APL and MPI models
are comparable and higher with respect to the CU model.

B. Different strain rate

The APL model, instead, outperforms the MPI model on
datasets SR1-SR9, since the MPI model is not able to re-
produce the rotation of the hysteresis loops as the strain rate
increases. This is clearly visible in Fig. 9, which shows the
time evolution of the measured and estimated strains (one
period) for datasets SR2 (left) and SR9 (right). The bottom
panels show the corresponding absolute errors. It can be
noticed that the APL model is the only one able to correctly
estimate the strain at both low and high rate with an error
always lower than 4%, as it reproduces the loop rotation, as
visible in Fig. 10.

The ideal characteristic of the compensated sensor shown
in Fig. 4 should be S=28. Fig. 11 shows the characteristics
obtained with the CU (left), MPI (center) and APL (right)
models on datasets SR1, ..., SR4. If the CU model is used,
hysteresis is not compensated, as demonstrated by the loops
in the (S, S‘) plane. With the MPI model, the loop areas are
greatly reduced, however the characteristics deviate from the
ideal one (black dashed line) as the input rate decreases. On
the contrary, by exploiting the APL model, hysteresis is well

50

S, S
[%]
25

50 100 4 150 200 0O 20 tfs] 40 60

Fig. 9. Measured (black dashed curves) and estimated (color curves)
strain .S for datasets SR2 (top left panel) and SR9 (top right panel). The
bottom panels show the corresponding absolute errors. Blue curves:
APL model; orange curves: MPI model; green curves: CU model.

50
40
s, I 30
(%] 20

10

0

12 16 pry 20 24 12 o) 20 24

16 R|

Fig. 10. Measured (gray points) and estimated (colored curves) strain
S vs. resistance R for the lowest (SR1) and the highest (SR9) strain
rates. Blue curve: APL model; orange curve: MP| model; green curve:
CU model.

compensated and the characteristics remain close to the ideal
one for all the considered input rates.

C. Relaxation behavior

For dataset RB1, the lowest error is achieved with the APL
model because it is the only one able to reproduce the relax-
ation dynamics. This is also visible in Fig. 12 (see in particular
the inset), where the APL model estimates an almost constant
strain in response to a time decreasing resistance, meaning that
the relaxation dynamics is at least partially compensated. In
other steps the compensation is worse, especially in the first
part of the steps, but anyway it is better than those obtained
with the other considered models. We also remark that this
dataset has not been used to identify the model parameters; this
test is therefore a further proof of the generalization capability
of the model.

IV. CONCLUSIONS

A novel model (APL) has been proposed, able to repro-
duce the rate-dependent hysteresis of a piezoresistive textile
(Electrolycra). The model has been derived from the power-
law (PL) model, suitable for piezoelectric actuators, which
also exhibit rate-dependent hysteresis, but with remarkable
differences, as pointed out in the Appendix.

Different from [25] and [37], where only few tests are
shown, the APL model has been validated on 13 datasets
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Fig. 11. Estimated strain S with CU (left panel), MP| (middle panel) and APL (right panel) model as a function of the measured strain S. The black

dashed line represents the ideal characteristic S = S.

(only 5 of them have been exploited to identify the model
parameters) comprising measurements of strain and resistance,
in three completely different scenarios. Analogously to the PL
model, also the APL model is suitable for implementation on
digital devices (e.g., microcontrollers [38]), making it suitable
for a real-time estimation of the textile strain, given the
measurement of its electrical resistance. This allows to develop
accurate strain sensors based on piezoresistive textile, suitable
for soft robotics applications.

This work also adds relevant results to the wearable tech-
nologies field. In particular, a correct estimation of the strain
for wearable flexible sensors is of a paramount important for
joint angle measurements, posture monitoring, motion patterns
recognition, and so forth. For this reason, it is expected to be
especially useful for real-time continuous measurement with-
out influencing the wearer?s activity, following the “wear and
forget” concept. Among the other characteristics, this strain
sensor based on piezoresistive textile is non-invasive, easy to
use, inexpensive and it offers the possibility of measurements
outside the laboratory setting.

The APL model provided a good hysteresis compensation
performance even with a small calibration dataset. These re-
sults confirm that an adequate processing can enhance the sen-
sor performances in case of dynamic measurements, without
a prior knowledge of the strain rate typical for a particular ap-
plication, extending its general applicability. Moreover, since
hysteresis is caused by the intrinsic mechanical properties of
the elastic material (that requires longer recovery time) the
approach can be extended to all the sensors which are based on
elastomer deformations and present rate-dependent hysteresis
to improve their estimation performance.

APPENDIX

The proposed APL model has been conceived starting from
the power-law (PL) hysteresis and creep model of piezoelectric
actuators (PEAs) proposed in [29], [35]. In this Appendix we
point out similarities and differences between APL and PL
model.

PL model is tailored for PEAs, i.e., actuators that exhibit a
displacement z when a certain voltage V' is applied, which are
largely used for micro- and nano-positioning applications [30],
[31]. In general, the relationship between z and V' in PEAs is
a hysteresis loop that rotates around its center when the input

151
e[%]10'

0 50 100

150 200

Fig. 12. Measured (black dashed lines) and estimated (color curves)
strain S computed on dataset RB1. Blue curve: APL model; orange
curve: MPI model; green curve: CU model.

rate changes, as shown in Fig. 13. The creep effect is instead
a slow elongation or contraction, in response to a piecewise-
constant applied voltage [38]. The following analogies and
differences between PEAs and Electrolycra can be observed:

1) the relationship between z and V' for PEAs and S and R
for Electrolycra is hysteretical, and the hysteresis loop is
traveled counterclockwise;

2) in PEAs the hysteresis loop rotates clockwise around
its center as the voltage rate increases, whereas in the
Electrolycra it rotates clockwise around its lower-left
corner as the strain rate increases;

3) in the presence of a step variation of voltage, the PEA
deformation slowly drifts (creep effect); the same happens
for the resistance of the Electrolycra in response to a
strain step (relaxing dynamics); !

4) in PEAs the creep is visible for both up-down and down-
up voltage steps [38] (see right panel of Fig. 14 for
a qualitatively description), whereas in the Electrolycra
the relaxation is negligible for up-down strain steps (see
Fig. 3).

INotice that for PEAs the direction of the relaxation dynamics is
coherent with the direction of the step [38], which is not the case for
Electrolycra (see Fig. 3). However, in the PL model the deformation is
the output, whereas in the APL model the resistance is the input.
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Fig. 13. Experimental loops obtained on a PEA with low (black dots)
and high (gray dots) input rate.

The above analogies suggested us that the PL. model could
be suitable also to reproduce the nonlinear dynamical behav-
iors of the Electrolycra, after some modifications.

The APL model differs from the PL model proposed in [29]
in the definition of implicit function hy(z, Zx,t). For the PL
model it is defined as:

i — o (B 0N sgne(r) - w(1),
if 25 — ()] < p

b (g, Tk, t) =
xp —&(t) — pg, if T < —0
xg — &) + pg, if & > 0
(6)
where p; = NL—H (k = 1,...,N) are thresholds equally

spaced in the range (0,1) and function sgn(-) returns 1 if
its argument is positive and -1 otherwise. The corresponding
nonlinear vector field is shown in Fig. 14 (the name “power-
law” derives from its central region) and its shape is deter-
mined by hyper-parameters o > 0 and p > 0 which, together
with N and M must be set a priori [35]. The PL model
reduces to the well-known MPI model for ¢ = 0 (in this
case, p has no influence). By applying a triangular input &,
the relationship between the state x of the k-th PL cell and
the input & is the trapezoidal hysteresis loop shown in black
in Fig. 14 (right pancl). As the input frequency decreases, the
loop becomes thinner, higher and smoother, but it maintains
its central symmetry. By contrast, in the APL model, when
the input rate decreases the loops rotate around the lower-
left corner, due to the different shape of the vector field. By
summing states x obtained with the PL. model as in Eq. (2), it
results that the hysteresis loop between the model output ) and
¢ is traveled counterclockwise and rotates clockwise around its
center (Fig. 15, left panel) as the input frequency increases.
The right panels in Fig. 15 show instead the response (bottom
panel) of the model to a step-wise input (top panel). Notice
that, differently from the APL model, the relaxation dynamics
is exhibited both for increasing and decreasing input steps.
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