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Abstract—The concept and significance of the so called non-
linear Shannon limit is reviewed and its relation to the channel
capacity is analyzed from an information theory point of view. It
is shown that this is a limit (if at all) holding only for conventional
detection strategies. Indeed, it should only be considered as
a limit to the information rate that can be achieved with a
given modulation/detection scheme. By virtue of some simple
examples and theoretical results it is also shown that, using the
same approximated models commonly adopted for deriving the
nonlinear Shannon limit, the information rate can be arbitrarily
increased by increasing the input power. To this aim, the validity
of some popular approximations to the output distribution is
also examined to show that their application outside the scope
for which they were devised can lead to pitfalls. To the best of
our belief, the existence of a true nonlinear Shannon limit has
still not been demonstrated and the problem of determining the
channel capacity of a fiber-optic system in the presence of Kerr
nonlinearities is still an open issue.

Index Terms—Optical fiber communication, information rates,
channel capacity, communication system nonlinearities, wave-
length division multiplexing.

I. INTRODUCTION

One of the most important results of the pioneering work
of Shannon was demonstrating that a reliable communication
over a noisy channel is possible, provided that the transmission
rate is less than a characteristic quantity determined by the
statistical properties of the channel, which he named channel
capacity [2]. Conversely, he also showed that this is not
possible when this quantity is exceeded. Other than laying
the foundations of what is now called information theory and
establishing such a general result, Shannon also derived a
specific closed-form expression for the capacity of an AWGN
channel [3], which increases logarithmically with the signal-
to-noise ratio (SNR). Hence, for such a channel, the ultimate
theoretical limit for the transmission rate is determined only
by the available signal power. Shannon’s work has been since
extended and generalized both to account for a broader class
of channels and to obtain closed-form capacity expressions for
other specific channels (see [4] and references therein).

In this context, the optical fiber channel is a major challenge
due to its peculiar nonlinear behavior. At low signal powers
it essentially behaves like an AWGN channel; in fact, modern
optical systems can achieve spectral efficiencies close to the
channel capacity per unit bandwidth when working in such
a linear regime [5]. However, contrarily to the AWGN case,
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when the signal power increases, the ensuing nonlinearities
impair conventional systems to the point that they cease to
work at higher powers. This naturally poses questions about
the impact of nonlinearities on the capacity of a fiber-optic
channel and whether an ultimate limit to the capacity exists
when increasing the signal power. Answering these fundamen-
tal questions is of paramount importance for the development
of future optical communication networks [6].

A variety of studies and facts hint at the possibility that such
a finite limit to the fiber-optic channel capacity actually exists,
so much that a name for it was coined—the nonlinear Shannon
limit (NSL) [5]. Moreover, both analytical expressions and
simulation techniques for computing this limit can be found
in the literature; many experimental systems can approach it,
but no one was able to demonstrate a system able to overstep
it; and its possible existence scares telecom operators with the
threat of a looming capacity crunch [7]. Yet, as we will show
in this paper, nobody has ever proved that such a limit exists.

To the best of our knowledge, a finite capacity limit for
a fiber-optic channel was predicted for the first time in [8].!
This pioneering work anticipated all others by several years
and already contained the essential elements of the NSL and
of the currently most used channel model: the Gaussian noise
(GN) model [9]. Maybe for being ahead of time and not
easily accessible, it went seemingly unnoticed for almost two
decades. A similar result was then independently rediscovered
in [10]-[13], exploiting different nonlinear fiber models (the

first three based on Feynman’s path integral, the latter on

Volterra series). The NSL name was then introduced several
years later in [5], with explicit reference to the formula
presented in [10]. Even though based on different approximate
models, all of these studies share the same hypotheses for
computing the NSL, namely, joint Gaussianity of input and
output, and absence of channel memory. These hypotheses are
explicitly mentioned in [10]-[12] and implied in the Pinsker
formalism used in [13] and in the Shannon formula for the
AWGN channel used in [8]. The most popular paper on
the fiber-optic channel capacity was published later and is
based on an entirely different approach: the channel capacity
is numerically estimated through an accurate simulation of
the channel and partial optimization of the input distribution
(uniform rings) and of the output metrics (bivariate Gaussian)
[14]. The importance of [14] is twofold; on one hand it
provides an accurate and detailed description of optical sys-
tems and networks to be analyzed from an information theory
point of view; on the other hand it assures that the obtained
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estimate accounts for all possible relevant fiber effects, also
pointing out their relative weight. The dominant effect turns
out to be the inter-channel nonlinearity (also considered in
[8], [10]-[13]) and this result is in substantial agreement
with the previous ones. Other relevant papers on the channel
capacity are [15],[16]. The first one, supplemented in [17],
deepens and makes explicit the GN model concept used in
[8], drawing the consequent conclusions in terms of channel
capacity, also extended to account for a dual polarization.
The second one develops a detailed analytical model of the
nonlinear interference based on a regular perturbation method,
producing results in agreement with [14].

All of the aforementioned results are in substantial agree-
ment, seemingly leaving no escape from the NSL. However,
in recent years the NSL concept has been criticized and it
was suggested that the capacity problem is far from being
solved. Some evidences to this effect, whose importance is
often neglected, can be identified in the same papers mentioned
above. In [10] it is said that the joint Gaussianity hypothesis
leads only to a lower bound for the capacity of the considered
channel model, but then it is conjectured that the final result
mirrors, at least qualitatively, the actual capacity value (so that
it presumably reaches a maximum and then decreases). In [14]
it is explained that the adopted methodology does not guaran-
tee obtaining the actual channel capacity, as the optimization
of the input distribution and the fitting of the output one is
performed on a limited set—in particular excluding any time
correlation—potentially neglecting some possible information-
rate gain. The possible exploitation of the long time coherence
of the interchannel interference, aimed at mitigating its effects
and improving the lower bound on capacity, is explicitly
suggested in [18] and then demonstrated in [19], with a
further improvement obtained in [20], [21]. The analysis in

[18]-[21] does not consider a network environment, in which
time coherence might be significantly reduced.

There are also some theoretical arguments against the NSL:
in [22] it was demonstrated that the capacity of a static
discrete-time channel, even when defined using an equality
constraint on the average power, cannot decrease when the
input power increases, as instead predicted by the NSL. For
example, in [23] and [24] it is shown that ever-increasing
bounds on the capacity (per symbol) can be obtained in the
presence of, respectively, nonlinear phase-noise and four-wave
mixing in non-dispersive fibers, exactly in the cases where the
typical approach used to compute the NSL would provide the
usual behavior with a finite maximum. As a matter of fact,
all papers that take into account realistic fiber models only
obtain lower bounds (or approximations) on the capacity with
a finite maximum. By contrast, the tightest known upper bound
for a realistic fiber-optic channel model equals the capacity of
the AWGN channel [25] and, therefore, increases indefinitely
with power. This does not allow to draw conclusions about
the impact of fiber nonlinearities on channel capacity, whose
value is essentially unknown at higher powers.

The main objective of this work is to discuss the significance
of the so-called NSL, rejecting its hard interpretation as a true
capacity limit and presenting an alternative soft interpretation,
which leaves the channel capacity problem open. To this aim,
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the information theoretical meaning of the NSL and its rela-
tion with channel capacity are investigated. As the derivation
of the NSL usually entails some specific assumptions in terms
of modulation and detection—mainly, joint Gaussianity and
uncorrelation of input and output samples—the accuracy and
optimality of these assumptions is also investigated. At a
theoretical level, the main message of this work is that the NSL
(as it has been computed so far) should not be interpreted as
the ultimate capacity limit of the optical fiber channel. Rather,
it should only be considered as a lower bound, as already
claimed in several previous works [6],[22],[23],[26]-[28],
whose tightness still can (and should) be improved. However,
the scope of this work is not limited to a theoretical analysis.
The fallacy of some Gaussian assumptions, the practical
need of more accurate models for evaluating the capacity,
and the actual possibility to go beyond the NSL are also
investigated through some examples. Large improvements on
the information rates are obtained in some simplified cases
and smaller (but still significant) ones in more realistic cases.
Only limitations due to fiber Kerr nonlinearity are investigated.
Other physical effects, such as fiber melting, may actually limit
channel capacity. Those effects, however, will become relevant
only when (and if) a practical way to go significantly beyond
the actual limitations imposed by Kerr nonlinearity will be
found.

The paper is organized as follows. The NSL is introduced in
Section II, discussing its information theoretical meaning, its
relation to channel capacity, and the role played by Gaussian
assumptions and the GN model in its computation. The
accuracy of typical Gaussian assumptions in the context of
capacity evaluation is investigated in Section III. Achievable
information rates beyond the NSL and capacity bounds for
single- and dual-polarization fiber channels are shown in
Section IV. Conclusions are finally drawn in Section V.

II. CHANNEL CAPACITY, NONLINEAR SHANNON LIMIT,
AND GN MODEL: HOW ARE THEY RELATED?

The capacity C of a channel is defined as the maximal
rate at which information can be reliably (i.e., with arbi-
trarily low error probability) transmitted through the channel
[2]. From an information theoretic point of view, a generic
discrete-time channel® is characterized by an input alphabet
X, an output alphabet ), and the conditional distribution
p(yn|xn), where xy = (z1,22,...,2n), With z; € X,
and yy = (y1,92,-..,yn), with y; € Y, are realizations of
the input Xy = (X1, X3,...,Xn) and corresponding output
Yy = (Y1,Ys,...,YyN) random vector processes. For ergodic
processes, the average mutual information rate between input
and output is defined as

106 Y) = Jim T(Xx; V) (1)

N—oc0

where (Y [Xn)
PLYN[AN
IXNn:;YNy)=FE<I _ 2

2In the following, random variables are denoted by upper-case symbols,
their realizations by the corresponding lower-case symbols, and vectors by
bold symbols.
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is the mutual information between X and Y, F{-} being

the expectation operator and p(yn) = [ p(yn|xn)p(Xn)dxN
the output distribution. The capacity of the channel is

C= ngnoo % 9;15 I(XN;YnN) 3
where the supremum supy . is taken with respect to all input
distributions p(x ) satisfying a specific constraint (usually on
the average power) [29].

In general, only the capacity of some specific channels can
be evaluated analytically, the additive white Gaussian noise
(AWGN) channel being perhaps the most notable example
[2]. A discrete-time AWGN channel is characterized by the
input-output relation? Yy = X + ng, where ny are real-
izations of i.i.d. variables with a zero-mean proper complex
Gaussian distribution [30]—often referred to as circularly-
symmetric complex Gaussian (CSCG)—with variance F,.
Given a constraint on the average signal power P, the
capacity of the AWGN channel is achieved when also the input
symbols are i.i.d. CSCG and has the well known expression
C = logy(1 + Ps/P,) [3]. As the capacity achieving input
distribution and the corresponding output distribution are zero-
mean, this capacity can also be expressed in terms of the
input variance 05 = P4, output variance 03 = P, + P,,, and
covariance 04y = P as?

2
x

0.0

C =logy(1 + Ps/P,) = log, )

2
y
2
oF o

2 _ ‘2
Y Ty

In this case, it is apparent that, since the noise power P, is
fixed and independent of the signal, the channel capacity grows
unbounded with signal power P;. This means that the channel
capacity is limited only if the available resources (power) are
limited (e.g., due to economic or technological constraints).
When turning our attention to the optical fiber channel, the
picture is more complicated. In this case, even the accurate
computation of (1) is practically unfeasible, since an exact
analytical expression for p(yy|xx) is unknown, while its
numerical estimation, which must be performed in a 4N-
dimensional space, is practically limited to very small values
of N. On the other hand, convergence of (1) and (3) to their
actual limit can be expected when N is of the order of the
channel memory, which can be many hundreds of symbols in
typical dispersion-unmanaged systems. For the same reasons,
also the optimization of p(xy) in (3) cannot be performed
analytically and, when resorting to numerical approaches, it
is limited to small values of IN. Nevertheless, as discussed
in Section I, it is a widespread opinion that the capacity of
the optical fiber channel has a peculiar dependence on signal
power and is actually limited by the NSL. This is usually
explained by invoking the cubic dependence of nonlinear
interference on signal power; when the latter increases, the
former increases even faster, such that the channel capacity

3A channel characterized by the input-output relation y;, = axy + b + n,
with a and b complex constants (known at the receiver), will be also referred
to as AWGN channel as it can be easily reduced to it by considering the
transformed output v, = (yx — b)/a.

4Written in this form, (4) gives also the true channel capacity for any
correlated Gaussian channel.
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source X channel Y destination
p(x) > X > q(ylx)
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Modulation decoding

Fig. 1. Discrete-time channel with mismatched decoding.

reaches its maximum value at some optimum launch power
and then decreases.

In order to understand what is the real meaning of the NSL
and its relation to channel capacity, we consider the more
general case, depicted in Fig. 1, of a discrete-time channel
with input process X and output process Y and of a detector
that takes maximum-a-posteriori-probability (MAP) decisions
based on a mismatched channel law ¢(yn|xx) # p(yN|XN)-
This is the typical situation in those cases, such as the
optical fiber one, in which the actual channel law is unknown.
Following [31], we define the achievable information rate
(AIR) with mismatched decoding metric ¢(yx|xy) as’

o q(ynIxn) }
lim —E 41 5
N1—I>r<1><> N { o8 fp(XN)Q(YN|XN)dXN ®

With respect to the average mutual information rate (1), (5) is
obtained by replacing the actual channel law p(yy|xx) with
an arbitrary mismatched law ¢(y ny |x ), while the expectation
is still taken with respect to the actual joint input-output
distribution p(y n|xn)p(xx) induced by the input distribution
and the actual channel law. The AIR (5) has some interesting
properties [31], [32]: it is achievable on the actual channel
with source probability p(x,) and a MAP detection matched
to g(yn|xn); it can be easily computed through numerical
simulations in almost any practical case, without an explicit
knowledge of the channel law; its maximization over any
possible detection law (obtained for ¢(yn|xn) = p(yn|XN))
provides the average mutual information rate (1); and its
maximization over both p(xy) and ¢(yn|xx) provides the
channel capacity C. Thus, I,(X;Y) < I(X;Y) < C. In the
context of optical fiber communications, the AIR defined as
in (5) has been explicitly used, for instance, in [33]-[37].
Quite interestingly, an analysis of the literature reveals that
the NSL, as defined in [5],[10], but also as computed in many
other publications [13], [14], [16], is just an instance of (5),
computed with specific input distributions and mismatched
channel laws (see Section I for a detailed discussion). The
convergence of results that can be found in the literature
about the NSL has induced the belief that the actual channel
capacity is very close to the NSL or, at least, follows the same
trend. Such a convergence, however, is due to the fact—not
always explicitly stated—that all those results, though obtained
through different approaches, are related to the computation
of the same quantity (5) with similar assumptions (usually
ii.d. input symbols with CSCG or uniform-ring distribution
and detection metrics optimized for a Gaussian memoryless
channel). Therefore, the NSL, exactly as the AIR (5), is only a

Iq(XJY) £

SIn [31], this quantity is actually referred to as the auxiliary-channel lower
bound to the information rate.
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lower bound to channel capacity, whose tightness is not known
a priori.

A special case of (5)—referred to as the Gaussian AIR in
the sequel—is obtained when considering i.i.d. CSCG input
variables and a detector matched to an AWGN channel (see
footnote 3) with the same input-output covariance matrix of

the real channel
Ui o2
27?/ (6)

U;cgi — |owy|?

Io(X;Y) = log, <

This result shows that the Gaussian AIR can be computed
for any channel by simply estimating a covariance matrix.
Remarkably, the expression of the Gaussian AIR equals the
(second) expression of the channel capacity for AWGN chan-
nels in (4). This means that the same expression can be
used (and, in fact, it is commonly used) for any channel,
but with different meanings: it gives the true channel capacity
for AWGN channels, while it provides only a lower bound
for generic channels. For instance, the information theoretical
limits computed in [8], [10], [15], [16], [18] are all obtained
by using (6), though computing the covariance matrix with
different approaches.

A final topic, which is somewhat related to the concept of
NSL and which we want to discuss in this section, is the GN
model. The importance of the GN model and its relevance
to the present discussion lie in its accuracy in predicting the
performance of real systems® and in its simplicity, which al-
lows the derivation of a closed-form expression of the channel
capacity that is in substantial agreement with the NSL [15]. In
the GN model, because of the accumulated dispersion, all co-
propagating channels of a WDM system become CSCG after
a short distance, regardless of their input distribution. Hence,
the adopted modulation format is irrelevant to the generation
of nonlinear interference, which is always generated by the
interaction of CSCG processes. Such nonlinear interference is,
in turn, modeled as an additive CSCG process, approximately
white over the signal bandwidth. In practice, supposing all
WDM signals independent realizations of the same process
with same average power P, this leads to a discrete-time
AWGN model with a noise power increasing with signal
power as P, = Pasg + 77P53; Here Pagg is the power of
the accumulated amplified-spontaneous-emission (ASE) noise
and 7 a parameter depending on system configuration. The
exact capacity of such a channel is given by (4) and is
achieved with i.i.d. CSCG inputs. The cubic dependence of
P, on P, makes channel capacity achieve its maximum at
some optimum power and then decrease [15]. In other words,
the GN model leaves no escape from the NSL: changing the
modulation format would not reduce nonlinear interference;
and no compensation or detection strategy could mitigate the
impact of AWGN. This, coupled with the many successes of
the GN model, has strengthened the belief that the capacity of
the optical fiber channel is actually limited by the NSL. If no
others, there is at least one pitfall in this reasoning. Indeed,

%An enhanced version of the GN model has been introduced in [38] to
correct some inaccuracies of the original model—highlighted for instance in
[16],[37],[39]—without significant changes to the basic features of the model.

http://dx.doi.org/10.1109/JLT.2016.2620721

the GN model (and its extensions) is just an approximation,
whose accuracy has been verified only for a limited set of input
distributions (usually with i.i.d. samples) and conventional
(usually memoryless) detection strategies. This, according to
(5), makes it only a lower bound to the channel capacity. On
the other hand, capacity evaluation entails optimization of (5)
over any possible input distribution and any possible detection
metric, jointly accounting for a possible large number of input
and output symbols N. This is out of the scope of validity of
the GN model.

When considering waveform channels (typical physical
channels, such as optical fibers, copper cables, free-space, and
so on, usually take waveforms as input and produce waveforms
as output), a typical quantity of interest is the capacity per
unit bandwidth (spectral efficiency). In this case, the problem
is usually divided in two steps: first, a discrete-time version
of the channel is found, in which band-limited input and
output waveforms are completely represented by a discrete
set of input and output symbols and related by a conditional
distribution, as in Fig. 1; then, the capacity of such a discrete
channel is computed (in bit/symbol) according to (3) and
converted to spectral efficiency (in bit/s/Hz) by accounting
for the symbol rate and bandwidth limitation. In this way,
using the sampling theorem, Shannon extended his work from
discrete-time to continuous-time channels [3]. This approach,
already fraught with difficulties in the AWGN channel [40],
becomes even more complicated in the nonlinear optical fiber
channel, in which signal bandwidth is not a conserved quantity
during propagation. Also this point will be shortly addressed
in the following section.

III. THE GAUSSIAN FALLACY

Gaussian approximations play a fundamental role in the
derivation of the nonlinear Shannon limit. In this section,
we critically review some common Gaussian assumptions and
approximations that are typically made in the context of optical
fiber communications and show, through some simple exam-
ples, that they are not always fully justified from a theoretical
point of view and may often lead to erroneous results. Note
that we do not question the accuracy of the approximated
models and results that rely on those assumptions and can be
found in the literature (e.g., the GN model and the nonlinear
Shannon limit). Nor do we deny their relevance in terms
of achievable performance in conventional systems. However,
we believe that those results have been sometimes attributed
excessive generality, as if they could provide the ultimate
answer to the capacity problem. In fact, this is not the case
and the capacity problem is still open.

A. Effect of Dispersion on a Non-Gaussian Process

Often, it is argued that a large amount of chromatic disper-
sion can turn any input process (e.g., a QPSK signal) into a
Gaussian output process by virtue of the central limit theorem.
This is, for instance, the underlying hypothesis in the well
known GN model. Indeed, it can be demonstrated that the
marginal distribution of each output sample converges to a
Gaussian distribution as the accumulated dispersion increases,
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regardless of the input distribution (at least for typical signals
employed in communications) [41]. This, however, does not
imply the Gaussianity of the output process, as in this case
the joint distribution of all its samples has to be Gaussian. In
fact, the following proposition holds.

Proposition 1. Given a stochastic input process and a linear
dispersive fiber, the output process is Gaussian if and only
if the input process is Gaussian, regardless of the amount of
accumulated dispersion.

Proof: Let {xy} be the samples, taken at the Nyquist rate
1/T, of a band-limited process at the input of a linear disper-
sive fiber with transfer function H(f) = exp(—j2nB2f%L),
with 35 the group velocity dispersion (GVD) parameter and
L the length of the fiber. Let {yr} be the corresponding
samples at the fiber output, taken at the same rate 1/T.
As |H(f)| = 1, the output power spectral density and the
corresponding Nyquist rate remain unchanged. Letting

1/2T ) )
hi — / H(f)@JZWf’LTdf

—1/2T

)

be the samples of the impulse response of the fiber, we can
express the output samples as a linear combination of the input

ones
yh =D hiti-i ®)

Thus, if {z)} are jointly Gaussian, then also the output
samples {yx} are jointly Gaussian, as they are obtained from
{x}} through the linear transformation (8) [42]. On the other
hand, noting that fiber propagation can be reversed by applying
the inverse transfer function H~!(f) = H*(f), we can also
express the input samples as a linear combination of the output

ones
e =) W e ©)

Thus, we can also prove by contradiction that if {z;} are
not jointly Gaussian, then {y;} cannot be jointly Gaussian.
In fact, if they were, any linear combination of {y;} should
be Gaussian [42], including the input samples (9), which, by
hypothesis, are not. u

An alternative proof can be constructed also by noting that
the linear transformation (8) preserves both the power spectral
density and the (differential) entropy rate of the propagating
process. This implies not only that a non-Gaussian process
cannot be turned into a Gaussian one, but also that it does not
even get closer (in terms of entropy) to it.

A consequence of Proposition 1 is that the interfering
channels in a dispersion-uncompensated WDM system cannot
be simply modeled as Gaussian processes, as assumed by
the GN-model. In fact, the generated nonlinear interference
does depend on modulation format. For instance, a PSK signal
generates a weaker interference compared to a QAM signal or
a Gaussian process, even in dispersion-uncompensated links
[16], [37]. This effect, not accounted for by the simple GN
model, is instead explicated by more accurate models such as
[16],[37]-[39]. As we will show, this is only part of the story,
as the statistical properties of the input signals affect not only
the amount of nonlinear interference, but also its statistical
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properties, with important implications in terms of channel
capacity.

B. Effect of Nonlinearity on a Gaussian Process

Proposition 1 makes clear that dispersion, alone, cannot turn
a non-Gaussian process into a Gaussian one. Nevertheless, it
is often argued that, if the input process is CSCG (e.g., ASE
noise), then the output process will remain CSCG even in the
presence of Kerr nonlinearity.” However, this is true only if
the fiber is linear or if the process is white (non band limited).
In fact, the following proposition holds.

Proposition 2. Given a band-limited CSCG input process and
a nonlinear fiber, the output process is not Gaussian.

Proof: Let 1 and x5 be two generic samples of the input
process, with joint CSCG distribution [30]

1 2 2 2 2 _ 290 *
p(x1,x2) = —— exp (_02|331| + ‘71|332\A {0121‘1362}>

m2A

(10)

where O’% = E{|X1|2}, O’% = E{|X2‘2}, g12 = E{XlXék},

and A = 0?02 — |012]2. Let yp = a1 exp(—jyL|zi|?), k=

1,2 be the corresponding samples at the output of a nonlinear

non-dispersive fiber (vL > 0, with « the nonlinear parameter).

By using the fundamental theorem for the transformation of

random variables [42] and observing that the Jacobian of the
transformation is unitary, their distribution is

1 1
P(y1,92) = oy EXP(—A(USHAF + oty (11

_ 2%{012y;y2€m<|y2|2|y1|2>}))

Therefore, the output samples are jointly Gaussian if and
only if the corresponding input samples are uncorrelated
(012 = 0). If the input process is white, then all its samples
are uncorrelated and the output samples are jointly Gaussian.
On the other hand, if the input process is not white, some
of its samples are correlated, meaning that at least some of
the output samples are not jointly Gaussian. Finally, using
Proposition 1, this conclusion can be extended to a nonlinear
dispersive fiber. [ ]

As an example, we consider the propagation of a CSCG
process with raised-cosine power spectral density with roll-off
factor 0.2, power P and (equivalent low-pass) bandwidth 1/2T
through a nonlinear non-dispersive fiber. Fiber and signal
parameters are chosen to have an average nonlinear phase
rotation yLP = 2. Fig. 2 shows a contour plot of the joint
distribution, obtained through Monte Carlo simulations, of the
real parts of the output samples y(¢) and y(t + 7), where
7 = T/4 in Fig. 2(a) and 7 = T in Fig. 2(b). As expected
from Proposition 2, for 7 = T'/4 the joint distribution is not
CSCG as the input samples are correlated, while for 7 = T it
is CSCG as the input samples are uncorrelated.

"Note that CSCG processes usually play an important role in the deter-
mination of channel capacity and related bounds as they have the maximum
differential entropy for a given power spectral density [25],[30] .
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Fig. 2. Joint distribution of the real parts of y(t) and y(t + 7), for (a)
r=T/4and b) 7 =T.

C. Spectral Broadening of a Gaussian Process

When considering the capacity (per unit bandwidth) of the
optical fiber waveform channel, an important issue, which is
often neglected, is spectral broadening. In fact, most systems
are usually designed to operate in a weakly nonlinear regime,
assuming that spectral broadening is negligible. This assump-
tion is indeed reasonable when considering WDM systems
with conventional modulation and detection as, in this case,
inter-channel nonlinearity limits system performance before
spectral broadening and signal-noise interaction become rele-
vant [14],[37]. On the other hand, in single-channel systems,
spectral broadening may become a relevant effect and be the
main cause of spectral efficiency limitations [43]. For instance,
it has been shown that at zero dispersion the capacity (per
symbol) of the fiber channel grows unbounded with power, as
signal-noise interaction affects only the phase of the received
signal [23],[44]. However, because of spectral broadening, the
same conclusion cannot be drawn about spectral efficiency
[44], which is usually the quantity of interest in a waveform
channel. Moreover, even in WDM systems, as we will show
later, inter-channel nonlinearity may not be as relevant as it
may appear, if properly modeled. For all these reasons, we
expect spectral broadening to become an important issue to
be investigated.

Spectral broadening can be used as an instructive example
to show how Gaussian assumptions, besides being unjustified
from a theoretical point of view (Propositions 1 and 2), may
also lead to completely erroneous conclusions when used as
approximations or working hypotheses.

For the sake of simplicity, we limit the analysis to the
case of a nonlinear non-dispersive fiber, as in Proposition 2,
considering a stationary process u(z, t) that evolves according
to the nonlinear equation du/dz = —jvy|u|?u. The corre-
sponding evolution equation for the autocorrelation function
Ru(2,7) & E{u(z,t)u*(z,t — 1)} is

aaRZu =F {g:v* + uaavz} = —jvE{|ulfuv* — |v|*v*u}
(12)
where we have defined v(z,t) £ wu(z,t — 7) and omitted
the dependence on time and space. If we assume that the
process u (and therefore v) is CSCG and remains such during
propagation (therefore neglecting Proposition 2), then the
fourth-order moments in (12) can be expressed in terms of the
autocorrelation function itself by exploiting Isserlis’ theorem
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[42]. In this case, using the stationarity and properness of u
and v, (12) reduces to

OR, [0z =0 (13)

which states that the autocorrelation function (and, therefore,
the power spectral density) of the process does not change
during propagation.

This result is in apparent contrast with common experience
and is due to the wrong assumption that the process remains
Gaussian during propagation. As demonstrated in Proposi-
tion 2, this is true only for white processes. Remarkably,
while the Gaussian approximations employed to compute (6)

are pessimistic in terms of capacity (per symbol), they might

become optimistic in terms of spectral efficiency if used to

model spectral broadening.

D. AIR and Capacity of a Discrete-Time Regular-Perturbation
(or Volterra-Series) WDM Channel Model

Inter-channel nonlinearity, and in particular XPM, is the
dominant effect that, in WDM systems, gives rise to the NSL
[5],[10],[13],[14], which is usually derived by neglecting the
other (minor) effects. In this section we show that, though
the Gaussian AIR (6) is actually limited by XPM, channel
capacity is not. To this aim, among many different XPM
models available in the literature, we select a simple model
based on a first-order regular perturbation approach [16],[39]
(and equivalent to a third-order Volterra series) as it is com-
monly employed for performance evaluation, provides a good
accuracy in conventional systems, and allows to construct
a simple proof of our claim. Considering only two WDM
channels for simplicity, this model leads to the following
discrete-time channel

Yk = T + Ze,m,n ClomnWhk—mWh_pTh—g + 1 (14)
where z; and y; are, respectively, the input and output
samples of the channel of interest at discrete time k; wy
is the input sample of the interfering channel at time k;
ng are the ASE noise samples (i.i.d. CSCG random vari-
ables) with variance E{|Ny|*> = P,}; and {csm n}, with
£,m,n=0,...,N —1, are some generic channel coefficients
(causality is assumed for simplicity of notation but is not
required to derive the following results). Note that (14) does
not account for other nonlinear effects such as intra-channel
nonlinearity, four wave mixing, signal-noise interaction, and
spectral broadening. These effects, however, have a negligible
impact on the performance of conventional WDM systems and,
as discussed before, are often neglected in the computation of
the NSL. Finally, we make the additional assumptions (typical
in optical networks and corresponding to the behavioral model
(c) described in [24]) that {x}} and {wy} are independently
drawn from the same alphabet with equal distribution and same
average power E{|X.|?} = E{|Wy|*} = P, (fairness and
independence among channels) and that {wy} are unknown
to the receiver.

In the following, we state and discuss the following result,
whose proof is deferred to the Appendix.
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Fig. 3. AIR with Gaussian ii.d. symbols and Gaussian detection metrics

or with M-PSK symbols and optimum (symbol-by-symbol) detection for the
discrete-time channel (14). The capacity of the AWGN channel is also shown
for comparison.

Theorem 3. The capacity of the discrete-time WDM channel
(14) grows unbounded with power. By contrast, its Gaussian
AIR has a finite maximum.

The theorem is proved for the two-channel WDM model
(14) for simplicity of notation, but could be easily extended
to many WDM channels. The key factors of the demonstration
are the use of a discrete input alphabet (M -PSK in particular,
but different alphabets would also work) and the use of the op-
timum (matched) detector, which treats the interference from
the other channel with its correct (discrete) statistics rather
than as a Gaussian noise. This allows to prove that, for any
alphabet size M, the error probability can be made arbitrarily
small as the signal-to-noise ratio Ps/P,, — oo, meaning that
an information rate of log, M bits per symbol can be achieved.
The proof is fairly simple for the regular-perturbation model
(14), but we conjecture that a similar (perhaps more compli-
cated) proof could be constructed for different models (e.g.,
based on a logarithmic perturbation [18], [37]).

As an example, we consider a channel like (14), with two
WDM signals and memory N = 3, whose 27 coefficients
{¢emn} have been independently drawn from a CSCG distri-
bution with variance P, /100. Fig. 3 compares the AIR with
Gaussian inputs and Gaussian detection metrics (A.13) with
the mutual information (MI) in (A.17) for various M-PSK
input alphabets. According to Theorem 3, while the AIR has
a finite maximum at some intermediate SNR and decreases
to a very small value at large SNR, the MI for the A/-PSK
alphabet always saturates to its maximum value log, M at high
SNR. Similar results (not shown here) have been obtained
for different channel realizations {c¢p,,}, memory N, and
alphabet size M. Note that similar results have been obtained
in [24] for a different WDM channel model, in which it
is assumed that four-wave mixing dominates over all other
nonlinear effects and that dispersion is negligible (memoryless
channel). This further supports the notion that inter-channel
interference, alone, does not bound the capacity of WDM
systems to a finite value. Note also that channel model
(14) assumes a synchronization (or predictable drift) among
WDM channels and neglects other nonlinear effects, such as
signal-noise interaction and spectral broadening. Therefore, we
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argue that the search for a possible capacity limitation induced
by nonlinearity (in some sense, a “true” NSL) should be based
on the presence of those additional effects and their interplay
with inter-channel interference.

IV. BEYOND THE NONLINEAR SHANNON LIMIT

Theorem 3 proves and Fig. 3 exemplifies that the capacity of
WDM systems is not limited to a finite value by the combined
effect of XPM and ASE noise, as the NSL suggests. However,
Theorem 3 and Fig. 3 do not account for other effects such
as signal-noise interaction and spectral broadening, which,
though usually negligible with respect to XPM, might still
be the cause of a capacity limitation. Moreover, though
the apparent capacity limitation induced by XPM can be
theoretically avoided by using proper detection metrics (see
the Appendix), this might be practically unfeasible for large
channel memory. This section addresses both those issues by
investigating the AIR improvements that can be obtained when
considering more realistic amplified multi-span WDM systems
and computationally feasible (though expensive) detection
strategies.

Two different cases are considered: a single-polarization
optical fiber channel, in which signal propagation is gov-
erned by the nonlinear Schrodinger equation, and a dual-
polarization optical fiber channel, in which propagation is
governed by the Manakov equation [45]. Both channels con-
sist of 1000 km of standard single-mode fiber (attenuation
a = 0.2dB/km, dispersion 8, = —21.67 psz/km, nonlinear
coefficient v = 1.27 W~'km~1!) and ideal distributed ampli-
fication (distributed gain exactly compensating for attenuation
and unit spontaneous emission factor). In both cases, the
AIR values are obtained by considering five Nyquist-WDM
channels (1 symbol/s/Hz)—each with bandwidth B = 50 GHz
and modulated by i.i.d. CSCG symbols (on one or two
polarizations)—and different detection strategies. The prop-
agation of the WDM signal corrupted by the ASE noise
injected by optical amplifiers is accurately modeled by using
the split-step Fourier method, such that all nonlinear effects
are included in the simulation. The expectation in (5) is
estimated on the central channel by averaging over many
random realizations. Capacity lower and upper bounds are
obtained by using the non-decreasing lower bound [22] and
the AWGN upper bound [25], respectively.

Fig. 4 reports AIRs and capacity bounds for the single-
polarization channel. The four AIR curves correspond to four
different detection strategies. The first one (solid line) accounts
for linear propagation effects through dispersion compensation
and for nonlinear effects only by an increased noise variance,
as prescribed by the GN model [15]. The second one (dot-
dashed line) mitigates intra-channel nonlinear effects by per-
forming a single-channel digital backpropagation (DBP) on
the received samples. The third one (dotted line) mitigates
also inter-channel nonlinearity by assuming that it generates a
time-varying inter-symbol interference (ISI) that can be partly
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Fig. 4. Achievable information rates and capacity bounds on the single-
polarization optical fiber channel. Information rates can be read also as spectral
efficiencies in bit/s/Hz.

compensated for by using a least-square equalizer (LSE) [20].8
Finally, the fourth one (dashed line) fully compensates for
inter-channel nonlinearity by performing a multi-channel DBP
and is mainly limited by signal-noise interaction (which is
not further addressed in this work but whose impact can also
be mitigated [46],[47]). Note that, while the first three cases
do assume a bandwidth constraint for demodulation (only the
signal bandwidth B is available), the fourth one does not.
These two different assumptions basically define two different
discrete-time channels. Finally, two capacity lower bounds
(with or without bandwidth constraint) and a capacity upper
bound are plotted.

Fig. 5 reports the AIRs and capacity bounds (per po-
larization) obtained for the dual-polarization channel when
using the same approaches considered in the previous case.
Moreover, it shows an additional AIR curve obtained by
considering a two-dimensional LSE for the mitigation of inter-
channel nonlinearity, which is more suitable for the Manakov
propagation equation.

Results indicate that the NSL, as obtained with a fixed input
distribution (Gaussian) and a mismatched detection strategy
(Gaussian), is not, in fact, a true limit. For instance, higher
information rates can be achieved with improved detection
strategies based on more accurate models for intra- and inter-
channel nonlinearity. Unfortunately, the AIR gains obtained
by using the LSE in links with distributed amplification are
lower [20] as, in this case, the coherence time of the XPM
effect reduces significantly [18]. However, the non-decreasing
lower bounds of Fig. 4 and Fig. 5—theoretically achievable
by satellite constellations [22], i.e., by complementing the
input distribution with a satellite point with proper probability
and power—clearly show that evaluating channel capacity by
using approximate models (though reasonably accurate for
conventional modulations) can lead to misleading results, and

8The use of transmitted symbols for the adaptation of the LSE equalizer,
though reasonable for the practical computation of performance, does not
comply with the requirements of the data processing inequality [29]. This
makes the corresponding curves an approximation, rather than a rigorous
lower bound. However, some preliminary results indicate that the lower
bounds obtained by using the multi-carrier approach described in [21] and
decoding metrics optimized for a phase-noise channel practically equal the
approximated results presented here.
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strongly suggest that a Gaussian input distribution is highly
sub-optimal at high powers. This does not tell us how or if
we can go beyond the known lower bounds, but is a stimulus to
look for non-conventional modulation and detection, knowing
that conventional approaches are not optimum and that the
capacity limit lies somewhere between the saturating lower
bounds and the ever-increasing upper bounds shown in Fig. 4
and Fig. 5.

V. CONCLUSIONS

The concept of NSL has become very popular in recent
years. It has been independently computed by different ap-
proaches, with a good agreement between analytical and
numerical results. And, in fact, the NSL has proved to be an
important practical limit for conventional systems, fostering
the belief that, in analogy to the classical Shannon limit, it
constitutes an ultimate limit for reliable communication over
optical fiber channels. However, theory does not support such
a belief, as the NSL is obtained with specific constraints on
modulation and detection, whose optimality is not proved. In
particular, Gaussian assumptions and approximations about
input and output processes are often involved in the com-
putation of the NSL. Those assumptions and approximations
are definitely of great practical value and have proved very
accurate in modeling conventional systems. Yet, they are
not justified at a theoretical level and, when used outside
the scope for which they were devised, can lead to pitfalls
and inconsistencies. For instance, we have shown that fiber
propagation turns a Gaussian process into a non-Gaussian
one, rather than the opposite. And that the non-Gaussianity
of the propagating process is fundamental to explain spectral
broadening in optical fibers.

Though the discrepancy between the definition of channel
capacity and the methodology adopted to compute the NSL—
as well as between conventional models and reality—can
be easily demonstrated, it is still unclear whether it is only
of theoretical interest or does have a practical value. In
fact, three different degrees of discrepancy can be observed
depending on the considered scenario. First, a fundamental
discrepancy is found when considering a channel model that,

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

though simplified to allow an analytical study, accounts for
the essential effects in the determination of the NSL—i.e.,
accumulated ASE noise and XPM. In this case, while Gaussian
assumptions about modulation and detection metrics lead to
the conventional NSL with a finite maximum, the use of
a discrete modulation alphabet and proper detection metrics
allows to arbitrarily increase the information rate by increasing
signal power. Then, a less fundamental but still significant
discrepancy is found when considering a fully realistic nu-
merical model of a link with ideal distributed amplification.
In this case, the ever-increasing information rate obtained for
the simplified model can neither be analytically proved (due
to the complexity of the model) nor numerically verified (due
to the long channel memory). Still, a significant AIR gain
can be obtained with respect to the conventional NSL simply
by using more accurate detection metrics that account for
channel memory and the non-additive nature of XPM. Finally,
a smaller but still measurable discrepancy is found by using the
same approach in links with lumped amplification, in which
the AIR gain reduces with the span loss. Nevertheless, the
tightest known lower and upper bounds to the capacity of
realistic optical fiber channels diverge at high power, leaving
the capacity problem still open and the hope for further AIR
improvements alive.

Some other issues, concerning the very definition of the
optical fiber channel and its capacity, have not been dis-
cussed. Those issues—such as the representation of a nonlinear
waveform channel through a discrete-time model; the need
of consistent definitions of bandwidth and spectral efficiency;
and the definition and analysis of multi-user and network
scenarios—have received little attention so far, in the belief
that they are not relevant compared to the major effects
that determine the NSL. We argue that, should the latter be
effectively overcome, those issues will become of paramount
importance.

APPENDIX A

In this appendix we prove Theorem 3 and give an expression
of the mutual information for an M-PSK input alphabet.
Proof of Theorem 3: Defining the normalized variables

X oW ga M oo Y
VP T VPR VP’ VP
to make explicit their dependence on the signal power Ps and
noise pBwer P,, we rewrite (14) as

X, & Wi, Ny & Y, & (A.1)

gk :jk+Ps§(jkask)+ Pn/Psﬁk (A2)

N ~ ~ ~ .
where s;, = (S(,'k,l, o e TE—N41, Wk - - - ,wk,NH) 1S a state

vector, N is the memory of the channel, and

{ERIEDY CtmnWk—m Wi —n Th—t (A3)
l,m,n

is the normalized interference term. We consider i.i.d. symbols

drawn from a normalized M-PSK alphabet
Ty, Wy, € X = (i}l (A4)

with y; = exp(j2mi/M), such that the state vector may take
N, = M?N-1 different values

sp €S = {0} (A.5)
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with uniform probability. Moreover, it can be verified that for
any alphabet size M

min IXi = x5| = 2sin(m/M) (A.6)

i

max |x; — x| < 2, (A7)
i

equality in the last expression holding only when M is even.

Given two distinct elements of the input alphabet, x; and
Xj, and an arbitrary pair of possible state vectors, o, and
oy, the distance between the corresponding noise-free output
symbols can be written as

dijab = [Xi — X5 + Ps [§(Xis0a) —E(x5.00)]]  (A)
If the difference of the interference terms is zero, then
dijab = |Xi — x;| = 2sin(n/M) (A.9)

otherwise, using the reverse triangle inequality, we can write

dijab = Ps 1€(Xi,0a) — f(Xj,O'b)| —Ixi — Xj|

> P [§(xi, 0a) = €(x5,00)| — 2
which, given that |£(x;,04) — &(X;,00)| > 0 by hypothesis,

can be made as large as desired by increasing P;. Therefore,
for P large enough, we have

(A.10)

dmin = min_ d;jap > min |[y; — x;| = 2sin(7/M) (A.11)
i#j, ab i#£]

If we consider an optimum symbol-by-symbol detector that

selects the transmitted symbol minimizing the Euclidean

distance with respect to the received sample yi, the error

probability at high power P, can be upper bounded as

P, <Pr {«/Pn TP,|Ny| > dmm/z} = exp (= Pod2,, /AP,)
< exp (—Pysin*(7/M)/P,) (A.12)

which proves that, for any size M of the modulation alphabet,
the error probability can be made as small as desired by
increasing the SNR P;/P,. Therefore, the information rate
can be arbitrarily increased by increasing the alphabet size M
and the SNR. On the other hand, the Gaussian AIR (6) can be
obtained by considering i.i.d. CSCG input samples in (A.2).
After some simple but long calculations, we obtain

Pn+Ps+Clps2+62P3
Pn—i-CgPS?’

Ig = log, < (A.13)
with

Cc1 = 2 Z §R{COmm}a
m
2
C3 = C2 — ‘ ZCOan’
m

It can be easily verified that co > c3 > 0, the last equality
holding only when all channel coefficients vanish (Gaussian
channel). Thus, the AIR (A.13) takes only finite values and

2
2
C2 :’ § Cé?nm‘ + E ‘Cl’rrm| 5

m Lmmn

(A.14)

lim Ig = logy(ca/cs) (A.15)
Ps—o0

is also finite (but for the Gaussian channel case).
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According to (A.2) and omitting subscript k, the conditional
distribution of the output sample y given the input symbol &

and state vector s is Gaussian and can be written as

o Py Py T
pilds) = 25 e (<l -3 Re@oR) (a16)

Thus, for a discrete input alphabet of size M, the

(symbol-by-symbol) mutual information between the input and

output variables X and Y (or their normalized version) is

1
I(X7Y):10g2M+M7M~E E
TEX s€ES

R > sesP(y]T,s)
/ p(y|l‘,S) 10g2 Z ng Sp(gpj/ S/)
z'e s'e ’

dj (A.17)

—0o0
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