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Abstract—FlexRay is a new high-bandwidth communication
protocol for the automotive domain, providing support for the
transmission of time-critical periodic frames in a static segment
and priority-based scheduling of event-triggered frames in a
dynamic segment. The design of a system scheduling with com-
munication over the FlexRay static segment is not an easy task
because of protocol constraints and the demand for extensibility
and flexibility. We study the problem of the ECU and FlexRay
bus scheduling synthesis from the perspective of the application
designer, interested in optimizing the scheduling subject to timing
constraints with respect to latency- or extensibility-related metric
functions. We provide solutions for a task and signal scheduling
problem, including different task scheduling policies based on
existing industry standards. The solutions are based on the
Mixed-Integer Linear Programming optimization framework. We
show the results of the application of the method to case studies
consisting of an X-by-wire system on actual prototype vehicles.

Index Terms—Automotive, FlexRay, mixed-integer linear pro-
gramming (MILP), real-time distributed systems, scheduling.

I. INTRODUCTION

T HE development of new by-wire functions with stringent
requirements for determinism and short latencies, and

the upcoming active safety functions, characterized by large
volumes of data traffic, generated by 360 sensors positioned
around the vehicle, are among the motivations for the definition
of the FlexRay standard. FlexRay is being developed by a
consortium [15] that includes major car manufacturers such as
BMW, Daimler-Benz, General Motors, Freescale, NXP, Bosch,
and Volkswagen/Audi, as a new communication standard for
highly deterministic and high-speed communication.

In FlexRay, the upper bound of communication speed is
10 mega bits per second (Mb/s), and the bandwidth is assigned
according to a time-triggered pattern. Time is divided into
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communication cycles, and each cycle consists of four seg-
ments—Static, Dynamic, Symbol Window, and Network Idle
Time [15]. Clock synchronization, embedded in the standard,
ensures deterministic communication at no additional cost.

The static segment of the communication cycle enables the
transmission of time-critical frames according to a periodic
cycle, in which a time slot, of fixed length and in a given
position in the cycle, is always reserved to the same node.
The dynamic segment allows for flexible communications.
Transmission of frames in the dynamic segment is arbitrated by
identifier priority. FlexRay includes a dual channel bus speci-
fication and will include bus guardians for increased reliability
and timing protection.

In the FlexRay static segment, each node only needs to know
the time slots for its outgoing and incoming communications.
The specification of these time slots is kept in local scheduling
tables. No global description exists and each nodes executes
with respect to its own (synchronized) clock. As long as the local
tables are kept consistent, no timing conflicts or interferences
arise. Slots that are left free in the (virtual) global table resulting
from the composition of the local tables can be used for future
extensions. Time protection and isolation from timing faults are
guaranteed by the reservation of time slots and guardians that
avoid node transmitting outside the allocated time window.

Given the tight time determinism in the communication
scheduling, and the possibility of bus guardians, the static
segment is suited for highly deterministic and safety-critical
communication which could not be otherwise accommodated
by the dynamic segment. As stated in [16] and [7], “the periodic
and safety-critical data is scheduled on the static time-triggered
segment while the dynamic segment is mainly used for mainte-
nance and diagnosis data.” In this paper, we focus on functions
characterized by tight time determinism requirements and
safety constraints–hence our scheduling efforts are targeted
only to the static segment.

The communication cycle and the transmission slot time
are design parameters that should be carefully selected. Fun-
damental issues related to the automotive supply chain: the
composition of subsystems, future design extensibility, and
reuse of components practically force standardization of these
parameters for an automotive Original Equipment Manufac-
turer (OEM) and possibly across the supply chain. The selection
of these parameters is discussed in the following. However,
because of standardization, we will assume them as given
inputs to our schedule synthesis.

Clock synchronization and time determinism on the com-
munication channel allow the implementation of end-to-end
computations in which the data generation, data consumption
and communication processes are temporally aligned. This
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avoids sampling delays, and therefore removes the worst
drawback of composable periodic activation semantics, that
is lateness, in exchange of determinism. Also, system-level
time-triggered schedules allow the semantics-preserving im-
plementation of distributed control models (including models
with synchronous reactive semantics, like those produced by
popular commercial tools like Simulink from Mathworks [1]).

Time determinism requires that the time-triggered model of
communication is propagated to the computation layers, using a
time-triggered scheduler and a careful coordination of the com-
munication and computation schedules. If the schedulers are
not coordinated, then not only guaranteeing time determinism
is more difficult and probably altogether impossible, but the
performance of the system in terms of latency is significantly
worse.

In this work, we explore two options, based on two ex-
isting standards for Real-Time Operating System (RTOS) and
task scheduling: the time-triggered OSEKTime, and the fully
preemptive, priority-based OSEK standard (OSEK stands for
“Offene Systeme und deren Schnittstellen für die Elektronik
in Kraftfahrzeugen,” that is: “Open Systems and their Inter-
faces for the Electronics in Motor Vehicles”). Both have been
included (OSEK) or extended (OSEKTime) by the AUTOSAR
(AUTomotive Open System ARchitecture) standard for au-
tomotive architectures and components [10]. Therefore, the
results presented here also apply to the use of AUTOSAR-com-
pliant operating systems.

However, AUTOSAR currently does not include explicit
standardization support for schedule synchronization between
the Electronic Control Unit (ECU) tasks and the FlexRay
cyclic frames, but only defines communication by periodic
sampling, where schedules are not synchronized. We discuss
the limitations in the application of the AUTOSAR standard
as is now and the applicability to our model. However, given
the continuous evolution of AUTOSAR, it is very likely that an
extension to a model with synchronized schedules will be pro-
duced in the future. Otherwise, it would be clearly inefficient
to define time-triggered standards for ECU scheduling and
communication networks, while leaving the interface between
the two domains without synchronization.

The main focus of this work is the development of a method-
ology, based on an Mixed-Integer Linear Programming (MILP)
formulation of the optimal scheduling of real-time tasks and
communication signals mapped into FlexRay static segment
frames.

II. RELATED WORK

In automotive systems, computation and communication
functions can be time- or event-triggered. In the first case, task
activations and frame transmissions are bound to happen at
predefined points in time. The Time-Triggered Protocol (TTP)
[20] is one example. TTP uses a Generalized Time-Division
Multiple-Access (GTDMA) scheme with variable sized slots,
in which each node has only one opportunity to transmit in
each cycle. In FlexRay, slots have the same size, but a node can
have more than one transmission opportunity in each cycle.

In order to accommodate a fraction of traffic that is dynami-
cally activated, flexibility can be added with an additional ded-
icated transmission window. This is the case of hybrid proto-

cols like Byteflight [6], introduced by BMW for automotive
applications and later superseded by FlexRay, and of Flexible
Time-Triggered communication over Controller Area Network
(FTT-CAN) [14]. The dynamic segment of FlexRay is similar
to Byteflight and uses a priority-based arbitration for outgoing
frames based on a virtual token concept.

In [27], the authors present an approach to timing analysis of
applications communicating over a FlexRay bus. The authors
first present a static cyclic scheduling technique for time-trig-
gered messages transmitted in the static segment, which extends
the previous work on TTP [13]. Then, they develop a worst-case
response time analysis for event-based transmissions in the dy-
namic segment. Message analysis techniques are integrated in
a holistic schedulability analysis algorithm that computes the
worst-case response times of all the tasks and messages in the
system. The analysis has been later improved in [28]. Finally,
[17] presents a compositional analysis framework to compute
worst-case end-to-end delays for FlexRay-based architectures.
All these works focus on the analysis side of the problem and
consider the feasibility of a given solution with respect to dead-
lines.

The design problem, that is, the synthesis of the FlexRay
static communication schedule for the optimization of a design
target is considered in [31] and [22]. In [22], both a fast heuris-
tics and a complete MILP optimization formulation are pro-
posed for the problem. The design target is the optimal schedule
in terms of the number of used slots (minimizing the number
of used slots). The paper assumes that the units of communi-
cation (to be mapped into FlexRay slots) are PDUs (Protocol
Data Units). Therefore, compared to this work, the authors as-
sume that communication signals are already packed into PDUs.
In [31], in addition to the minimization of the number of used
slots, the authors also present a formulation for the minimiza-
tion of the transmission jitter. In this case, the method provides
also the optimal packing of signals into frames (slots). The au-
thors formulate the problem as a standard MILP and discuss
reduction techniques. Both works discuss optimization of the
static segment communication schedule, but do not attempt op-
timization at the system-level. They do not consider possible
end-to-end deadlines, information passing and precedence con-
straints among tasks and signals, nor synchronization of the task
and signal schedules.

In [16], the authors discuss a system-level design optimiza-
tion problem. However, they assume a communication model
where task and message schedules are not synchronized and
the proposed solution is a heuristic, with no guarantee of opti-
mality. Because of the asynchronous communication model, the
problem considered in the paper is characterized by freshness
constraints only (on the communication side). The optimiza-
tion metrics are the minimization of the communication band-
width (which of course only makes sense in an asynchronous
task-to-message information passing model) and the minimiza-
tion of the number of used slots.

Compliance with the AUTOSAR standard for message frame
offset and periodicity definitions is included in the formulations
in [22] and [16]. AUTOSAR constraints are also discussed in
[21], with respect to their implications on the (end-to-end) re-
sponse time analysis and network utilization bounds. In prac-
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tice, the AUTOSAR FlexRay interface requires message periods
to be strictly powers of 2 of the FlexRay cycle time. Concluding
their study, the authors of [21] state that “This potential mis-
match (between the true application periods and the AUTOSAR
bounds) leads to a lower schedulable utilization for the AU-
TOSAR FlexRay interface The least upper bound of schedu-
lable utilization achievable under the AUTOSAR FlexRay inter-
face is 50%, when the message-generating task periods are less
than 128 communication cycles.”

With respect to the cited works, our contributions can be sum-
marized as follows.

• We present an optimization framework that includes not
only signal to frame packing, but also frame to slot assign-
ment (slot schedule), task schedule and the synchroniza-
tion of signal and task scheduling considering end-to-end
delays and the precedence constraints induced by informa-
tion passing between tasks and signals.

• We provide an MILP formulation for this (NP-com-
plete) problem, instead of a heuristic method. Formally,
NP-completeness has been demonstrated for a subset of
our problem, namely, the packing of signals (or more
accurately, PDUs) into slots [22]. The possible advantages
of an MILP solution are:
— The availability of a bound for the cost of the optimal so-

lution (which allows to evaluate the quality of the inter-
mediate solutions provided by the solver) and the pos-
sible guarantee of optimality in case the solver finds
the optimum solution.

— An MILP formulation is typically easier to retarget to a
different optimization metric compared with heuristics;
It also can easily accommodate additional constraints or
legacy components which makes some design variables
become constants in the formulation.

— For computing the solution it is possible to leverage
availability of solvers that have been designed and pro-
grammed for good runtime and space performance.

— The solution is more easily formulated for reuse by any
designer who wants to adopt it.

• Our MILP formulation includes the system-level schedule
optimization with the definition of an optimal relative
phase in the activation of tasks and signals which accounts
for deadlines and precedence constraints.

• We provide reduction techniques for two metrics of in-
terest. One, the minimization of the number of used slots,
is probably the most popular metric for extensibility (and
used in the greatest majority of the cited works), because
any unassigned slot in FlexRay can be used by a new ECU
connected to the network, and therefore matches the con-
cept of extensibility at the ECU-level. The other metric is
the maximization of the minimum laxity (difference be-
tween deadlines and response times) on paths selected by
the designer.

• We show how the MILP formulation can actually compute
the optimal solution for case studies taken from actual ve-
hicles (not benchmarks or randomly generated system con-
figurations) of industrial complexity. We provide experi-
mental data (runtimes on systems of different size) to es-
timate the scalability of the proposed methods, where the

problems are modeled in AMPL and solved using CPLEX
11.0 [11] on a machine with a 3.2 GHz CPU and 1 GB
memory.

As for the possible limitations, we assume the FlexRay com-
munication cycle, the static segment length and the slot size
as predetermined. This assumption certainly allows to greatly
simplify the problem complexity, but is mostly motivated and
justified by the need of standardization, which is in turn a con-
sequence of the automotive supply chain. Also, our work only
partly accommodates current AUTOSAR recommendations.
This is mostly caused by the lack of AUTOSAR support for
systems where task and signal scheduling are synchronized.
These limitations will be discussed at length in the following.

The organization of the rest of this paper is the following.
Section III discusses two possible options for task and signal
synchronization and information passing. Section IV provides
an introduction to the system model used in this paper for tasks,
signals and the FlexRay bus configurations. Section V describes
the formulation of the schedule optimization for tasks and sig-
nals in MILP framework. The next two sections provide ex-
tended discussion of reduction techniques and experimental re-
sults with respect to [33]: Section VI presents the set of reduc-
tion techniques for the metric function of number of used slots,
the results of the application to real systems case studies and a
discussion on scalability; Section VII discusses another metric
function of maximizing the minimum laxity among the paths.
Finally, Section VIII concludes this paper.

III. SYNCHRONIZATION MODES

To leverage the full benefits of the FlexRay deterministic
communication, it is necessary to synchronize the scheduling
of tasks and signals. In this case, besides packing the signals
into frames, designers will need to schedule the software tasks
and frames, such that timing constraints including end-to-end
deadlines are satisfied. In this work, we explore two options,
based on the two existing standards for RTOS and task sched-
uling. One is the time-triggered OSEKTime standard. The
other option is based on the fully preemptive, priority-based
scheduling of the OSEK standard. There are two possible
synchronization patterns between tasks and signals.

• Asynchronous scheduling. This model does not require
that the job and signal schedulers are synchronized. Jobs
(a job is defined as the instance of execution of a task) post
data values for the output signals in shared variables. The
communication drivers have the responsibility, at the be-
ginning of each cycle or before each slot, to fill the regis-
ters for the outgoing communication slot. At the receiving
side, the data are written into output registers and asyn-
chronously read by the reader tasks.

• Synchronized scheduling. In this case, job executions and
frame transmissions are synchronized in such a way that
a job must complete before the beginning of the slot that
transmits its output signal (with a margin determined by the
necessary copy time). When schedulers are synchronized,
it is possible to know what job produces the data that is
transmitted by a frame and what is the job that reads the
data delivered by the frame. Scheduling can be arranged
to achieve very tight end-to-end latencies and small jitter
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Fig. 1. Schedulers synchronized and not synchronized.

between the best and the worst-case response times. Also,
equally important, this model can easily guarantee time-de-
terminism and the preservation of the stream of data ex-
changed over the bus.

Fig. 1 shows two examples of scheduling without task
and frame start and finish time synchronization and with
synchronized instances, respectively. When schedulers are syn-
chronized, sampling delays can be controlled and worst-case
latencies can be reduced.

When considering the asynchronous scheduling, the FlexRay
scheduling problem consists in the optimization of the commu-
nication scheduling for a set of periodic signal streams, gener-
ated at the ECU interface and considered independently from
their sender and receiver tasks. For several car manufacturers
this is a problem of high practical interest, because the first
step in the move to FlexRay is likely to be the remapping of
existing CAN communication flows, which are today typically
asynchronous with respect to computations. This problem is ad-
dressed in [22].

Synchronization of Schedules and AUTOSAR Compliance:
The current AUTOSAR specifications (4.0) [10] requires that
the transmission of each signal is periodic. In an AUTOSAR
flow, signals are mapped in frames (or PDUs, Protocol Data
Units) and frames are then assigned to slots. Among the
attributes that characterize each frame there is the assigned
slot FRIF_SLOT_ID. Most importantly, AUTOSAR currently
restricts the slots assignment to be periodic, with initial cycle
FRIF_BASE_CYCLE and period FRIF_CYCLE_REPETI-
TION, with the latter constrained to be a power of two ( 64).
This imposes strong requirements on the signal packing and
the transmission periods of frames and signals, which makes
almost impossible to construct a system in which schedulers
are synchronized (except for the special cases in which the
periods of the transmitter application tasks match exactly the
allowed periods for frames).

The designer today has two options: be compliant with AU-
TOSAR and leverage all the advantages of the standard, in-
cluded (but not limited to): improved portability, reusability,
logging, debugging, and configuration. However, in this case,

compliance with the rule comes at some price. Application sig-
nals must be constrained to be periodic with a period equal to a
power of two of the FlexRay communication cycle time, or it is
impossible to achieve synchronization between the scheduling
of sender task, signal and receiver task, with a negative impact
on end-to-end latency, a waste of bandwidth [21] and the need
of additional synchronization layers [32] to recover the deter-
minism that is necessary in safety-critical systems [30].

The second option is to synchronize schedulers and yield
AUTOSAR compliance. Compliance with AUTOSAR is not
strictly necessary for the development of FlexRay systems (and
indeed several FlexRay systems are today developed without
AUTOSAR support). In addition, AUTOSAR is in continuous
evolution (timing support has only been added with release 4.0,
approved in the very last months) and support for the synchro-
nized scheduling of frames and tasks is likely to be provided in
future versions.

Time aspects and better utilization, however, are probably not
the main reasons why a synchronous model will be desirable or
even necessary in the future. Many systems are today developed
according to a model-based flow. Although AUTOSAR is ag-
nostic with respect to SW development, very few people would
disagree that it will have to be compatible with model-based de-
velopment.

One of the tenets of model-based development is the ca-
pability of validating the models by simulation or formal
reasoning before deployment of the target architecture. How-
ever, this implies that the translation of the models into software
tasks and network messages preserves some semantics prop-
erties of the model (at least the ones verified by simulation or
model checking). Currently used models (such as Simulink)
are based on a deterministic synchronous reactive semantics.
Translation of these models into an asynchronous platform, in
which a random delay can occur at the interface between tasks
and messages, may easily be the cause for the violation of the
model behavior and unexpected results (this, of course, unless
special synchronization layers [32] are deployed, with a further
degradation of the performance).

The effect of delay on controls is formally discussed at length
in [5]. Here, we only recall a very simple example from [25]
showing what is the effect of a time delay at the interface be-
tween the output of a task and the transmission of a (FlexRay)
message on the output of a model, as compared with the sim-
ulation output for zero delay. Fig. 2(a) shows a very simple
Simulink system, in which two source blocks, a free counter
modulo 16 and a repeating sequence generator producing the
sequence [4, 2, 1], are executed with period 4 and feed a mul-
tiplier executing with period 1. We assume that the system is
implemented in a distributed platform, where the data commu-
nications between the source blocks and the multiplier is sched-
uled over a FlexRay bus. Fig. 2(b) shows the simulation output
with no delay at the interface between the computations and the
communication link. Fig. 2(c) shows the same output, this time
with some delay experienced by the signal upon transmission
on the network. In the case of schedulers without synchroniza-
tion, these delays appear in a pseudorandom fashion, changing
the values of the output in a way that is difficult to predict, and
typically spoils the result of any model-based verification.
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Fig. 2. Change in output because of (random) delay on communication.

Fig. 3. System model with tasks, links, and delays.

Fig. 4. Instance graph, application cycle, and FlexRay communication cycle.

Focus of the Paper: The focus of our paper is the synchro-
nization of signal and task scheduling, considering end-to-end
delays and the precedence constraints induced by information
passing between tasks and signals. In this synchronization
mode, there are two possible scheduling models for tasks in a
FlexRay environment. In the first model, tasks are scheduled
according to the OSEKTime framework. In OSEKTime, tasks
are executed according to a time table, which defines their start
times, and can optionally preempt each other. The other option
is to schedule tasks in an OSEK framework in which tasks are
periodically activated, each task has a fixed priority and the
scheduler is preemptive with the option of preventing preemp-
tion inside selected task groups. In this paper, we provide a
problem formalization and an MILP solution for both OSEK
and OSEKTime task scheduling.

IV. DEFINITIONS, NOTATION, AND ASSUMPTIONS

We consider a model of the system computations as a
dataflow graph . The vertices represent the tasks and the
edges represent the data signals communicated among them.

A task is characterized by the tuple ,
where is the ECU resource it needs to execute, is its period,

is its initial phase, is its release jitter, is its execution
time, and is its deadline. For priority-based scheduling
systems such as OSEK, each task is assigned a static priority

, and the scheduling policy is assumed to be fully preemp-
tive. We use the convention in OSEK: the higher the number
is, the lower the priority level is, thus implies that
has a higher priority than . We also denote the set of tasks
with higher priority than and executed on the same ECU as

.
An edge represents the input/output connections between

tasks. An edge between tasks and denote a data signal
with a given bit width produced by and available to

. For simplicity, signals will also be identified and denoted by
a single index as in . Each periodic task reads its input at its
activation time and writes its results at the end of its execution.
Each signal may optionally be delivered with a unit delay, e.g.,
the signals from to and in Fig. 3. Each signal also
carries a precedence constraint in the execution of the sender
and receiver job. If the signal is delivered without a unit delay,
the successor must be executed after the sender job instance
activated immediately before it, but before the following one;
otherwise, the successor will use the signal value produced by
the previous job of the sender (see Fig. 4).
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Each task will run an infinite sequence of instances or jobs.
The application cycle or hyperperiod is defined as the least
common multiple (lcm) of the periods of all tasks. Inside the
hyperperiod, each job is considered as an individual scheduling
entity and denoted as . The scheduling problem consists of
planning the execution of jobs and the transmission of signals
into the available slots inside . Jobs can also be denoted with
reference to their task. In this case, denotes the th job of
task .

The arrival time of a job instance is denoted as or, using
the instance index notation as , with

. It indicates the time instant when the job is signalled
to be available for execution. The release time of a job is ,
the time instant when the job is actually ready for execution.
The start of execution time is and the finishing time is . The
response time of a job is the time interval from its arrival to
its termination, i.e., . The worst-case task response
time of task is the maximum of the response times of
its jobs . The worst-case jitter of task is the maximum
difference between the arrival time and release time of all the
jobs of (typically representing activation delays because of
interrupt response times and the execution time of the scheduler
itself).

The set of all the task instances transmitted in the applica-
tion cycle defines the application instance graph, as in Fig. 4.
Signals transmitted by tasks allocated to the same node may be
transmitted in the data content of a frame in a communica-
tion slot. We denote the start time of the th slot inside FlexRay
communication cycle as , and its finishing time .

A path from to , or , is a sequence of
tasks such that there is a link between any two consecutive tasks.
For example, in Fig. 3, a path exists between tasks and . The
latency of path is defined as the time interval between the
arrival of one instance of and the completion of the instance
of that produces a result dependent on the output of .

The scheduling of FlexRay communication consists of the
mapping of the tasks and signals defined in the application cycle
into a set of communication cycle instances. This mapping can
be performed in different ways, according to the selection of
the communication cycle length, the size of the static segment,
the slot size and correspondingly of the number of static slots in
each communication cycle. It is practically impossible to encode
all the above into an integrated problem formulation to be solved
by an optimization framework. The resulting problem would
very likely suffer from issues related to the size of the search
space.

However, in practice, because of the structure of the supply
chain and the need to reuse ECUs on different platforms, the
fundamental parameters of the FlexRay communication cycle
(FlexRay cycle length, size of the static segment, size of the
static slot) are being standardized by most car integrators (au-
tomakers) and possibly across the industry. Otherwise, it would
be impossible to reuse one component from a supplier in a dif-
ferent platform. Since suppliers work by numbers of hundreds of
thousands and supply several automakers, there is a huge push
for global standardization of these parameters. Each ECU is pro-
duced in large numbers (hundreds of thousands) and it would be
difficult to change the communication schedule definition every

time the ECU is used in a different platform. Also, ECUs can be
integrated on the same bus only upon the condition that the com-
munication parameters are defined in the same way and sched-
ules do not conflict.

For sake of completeness, we summarize the outcome of the
study in [31] (the only one we could find in our bibliography).
The authors conclude that for the FlexRay communication cycle
time it is favorable to use the largest possible value (power of
two-divider of the application cycle). This largest value is very
likely in contrast or even incompatible with the AUTOSAR re-
quirements on frame periods. For the static slots size, the authors
provide the set of constraints that bound the set of possible size
definitions and then propose to try them all by enumeration.

In this work, we assume a FlexRay bus configuration
as given, where is the length of

the application cycle (the least common multiple of the task
periods), is the length of the FlexRay communication
cycle, is the number of slots in the static segment of the
communication cycle, is the length of the slot in time, and

is the size of the slot in bits. Based on this configuration,
we apply a mathematical programming framework to encode
the problem and synthesize other variables such as slot owner-
ship, signal to slot mapping, frame and task scheduling.

We formulate our problem in the general framework of math-
ematical programming, where the system is represented with
parameters, decision variables, and constraints over the param-
eters and decision variables. An objective function, defined over
the same set of variables, characterizes the optimal solution. Our
problem allows an MILP formulation that is amenable to auto-
matic processing. An MILP program in standard form is

(1)

where is a vector of positive real or integer-
valued decision variables. MILPs can be solved very efficiently
by a variety of solvers. In this work, we make use of the CPLEX
solver [11].

V. PROBLEM FORMULATION

We use a mixed integer programming formulation to find a so-
lution to the FlexRay scheduling problem with respect to a cost
function that accounts for extensibility or timing performance.

A. Activation, Release and Deadline Constraints

, and denote the initial phase, period and relative
deadline for periodic task . , , , denote
the arrival time, activation time, start time, and finish time for
a job . and are input parameters, while , and conse-
quently , , (for OSEKTime scheduling only) and are
variables for the optimization framework. Given that all tasks
are periodic with an initial phase, the arrival times of the jobs
must be constrained accordingly

(2)

(3)
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All jobs must finish before their deadlines.

(4)

is linked to through . is the “ideal” periodic acti-
vation time, as provided by a hardware interrupt coming from
a clock. is the corresponding time when the periodic task
(that should arrive at ) is released into the system, or more
precisely, put into the ready queue by the interrupt handler rou-
tine. The difference between these two times is assumed as neg-
ligible for time-triggered OSEKTime systems where jobs are
dispatched and executed according to a time table (there is no
scheduler), and we assume dispatching delays to be negligible,
hence , however, this assumption is not true for OSEK
systems, and we constitute the jitter in our formulation. The
job start times must be constrained to be larger than the cor-
responding activation times

(5)

In OSEK, tasks are activated periodically, by an internal dis-
patcher or by an alarm and scheduled according to their prior-
ities. As previously stated, the response time of the scheduler
may introduce jitter in the activation time

(6)

The optimization variables , , and are all non-neg-
ative real numbers. In actual systems, the activation offset
is constrained to be a multiple of the system tick and should
be more accurately modeled as an integer. However, this would
greatly increase the complexity of the formulation with little ad-
vantage. In practice, we assume that the system tick is small
enough to allow neglecting this quantization error (as in most
cases). The final solution should however be checked for feasi-
bility after the have been quantized into the values allowed
by the tick resolution on each ECU.

B. OSEKTime Start Times and Preemption

A binary variable is used to define the order of execution of
jobs

if
otherwise

(7)

The values of the variables need to be kept consistent with the
start times according to the definition

(8)

(9)

where is a sufficiently large constant (larger than all other
quantities involved in the formulas) This is the standard “big
M” formulation of conditional constraints. Similarly, a binary
variable is used to encode preemption between and on the
same node with no data dependency

if
otherwise

(10)

A set of constraints applies to the preemption variables.
Clearly, mutual preemption is not allowed

(11)

If starts later than , does not need to preempt . This leads
to an additional constraint between and

(12)

The next inequality pair encodes additional properties of pre-
emption with respect to starting and finishing times. If job
starts before and is not preempted by , then its finishing time
should be less than or equal to the starting time of . However,
if is preempted by , then it needs to finish after the execution
of , as defined by the second constraint

(13)

(14)

C. Schedulability Constraints

The schedulability constraints are modeled according to the
rules for computing the starting, finishing times, and deadlines
of all the jobs and signals (frames) scheduled or transmitted on
the bus.

In OSEKTime, define as a set which contains all the job
pairs , where and are mapped onto the same ECU
without any data dependency (precedence constraints) between
them and . Equation (15) calcu-
lates the worst-case delay from the start to the finish of job

(15)

In OSEK, the worst-case response time is computed for the
tasks and applies to all their jobs (where is the set of tasks
with priority higher than )

(16)

Since all the parameters in (16) except are known, can
be computed beforehand and used as a parameter. After op-
timization, data dependencies result in phase (offset) assign-
ments for the activation of the tasks. Real-time schedulability
theory tells us that the value of computed according to (16)
is the largest possible for any possible offset assignment and
it is therefore safe to use (but pessimistic) for the purpose of
defining end-to-end deadline constraints and a latency metric.
The finishing time of OSEK tasks is computed as follows:

(17)

D. FlexRay Protocol Rules

In a communication cycle, is used as an input param-
eter which denotes the starting time of the slot from the
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communication cycle. is easily calculated as
.

The mapping of signals to slots is encoded in a set of binary
variables

if is mapped to cycle , slot
otherwise

(18)

If a signal is mapped to the slot of the cycle, the start
time and finish time of are automatically constrained to
the start time and finish time of the slot

(19)

(20)

(21)

Each signal can only be mapped to one slot and the sum of the
payloads over all the signals mapped into a specific slot will be
upper bounded by the slot size

(22)

(23)

where is the maximum time span over which the planner
must compute a schedule (see Section V-G).

Each slot is owned by an ECU or it is free. A set of binary
variable encodes the status of each slot

if slot is owned by ECU
otherwise

(24)

FlexRay has its requirement for the slot ownership. If a slot is
owned by one specific ECU, then the ownership applies to every
communication cycle. Constraint (25) encodes slot ownership.
If signal is mapped to communication cycle and slot , then
its source ECU must own slot . (26) ensures that every slot is
owned by at most one ECU. If no signal is mapped to slot
in any communication cycle, then constraint (27) sets the slot
ownership to null

(25)

(26)

(27)

where is the number of communication cycles in .

E. Data Dependencies

If there is a data dependency between two jobs or between
a job and a signal, then all successors must start later than the
predecessors. For example, if a job sends a signal to some
other job , then we need to make sure that finishes execu-
tion before the signal is scheduled for transmission on the bus,
and the signal finishes its transmission before the receiver job

arrives. The following constraints encode these requirements,
where represents the worst-case copy time for the outputs to

be written into the data transmit register in the FlexRay adapter,
and the copy time into the input variable for the receiving
job:

(28)

(29)

If the communication between jobs and occurs on the same
node, a similar condition needs to be defined to ensure that the
sender finishes execution before the arrival of the receiver in
case they are executed by an OSEKTime system

(30)

However, (30) is over-constrained for OSEK tasks which are
scheduled according to their priorities. If the sender job has
a higher priority than , then we only need to guarantee that
arrives before . Thus, (30) can be refined as follows:

if
otherwise

(31)

Also, to avoid that the data in signal is overwritten by the next
job of the same sender task, needs to start transmission
before the arrival of , i.e.,

(32)

F. Legacy Components

For legacy components, the scheduling of tasks and signals is
predefined, thus the values of design variables such as the task
phase and signal to slot mapping (18) are given.

G. Scheduling Window

If is the initial phase of a generic task , the scheduling
of the tasks and of the FlexRay bus must be performed until
an entire application cycle has been computed. This means that
the schedule must continue until time . Since the
initial phase values are computed as a result of the optimization,
we will use an upper bound for the previous formula

(33)

In the interval (see Fig. 5), we need to schedule for
each task a number of instances

(34)

However, not all of those instances can be scheduled freely. In
the example of Fig. 5, this is true for , but not for , which
must be scheduled in a position defined by because they
are actually the same instance in the hyperperiod cycle. This
translates into the constraint on the finish times for both types
of schedulers. This translates into the constraint on the finish
times for both types of schedulers

(35)
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Fig. 5. Extent and constraints in the definition of the scheduling domain.

For a time-triggered (OSEKTime) scheduler, it must also be

(36)

is the number of jobs in one hyperperiod for task

(37)

Similar constraints exist on the scheduling of the FlexRay slots.
We need to schedule beyond the application cycle, up to
number of cycles, where

(38)

in the last cycle, however, only

(39)

slots need to be considered. Similar to job scheduling, signal
to slot mappings must match when they refer to the same posi-
tion in the application cycle. The matching set of signals can be
identified as follows. If the sender and receiver jobs of signals

and are exactly one application cycle away, i.e.,

(40)

then the two signals are actually the same and must be allocated
to the corresponding slots (with a distance of ). We denote this
relationship as . For each cycle and slot index and,
for each pair , it must be

(41)

H. AUTOSAR Compliance

As previously stated, AUTOSAR compliance requires each
signal to be periodic, that the mapping of signals into frames
or PDUs is statically defined. Similarly, PDUs are statically as-
signed to slots. AUTOSAR also requires the slots assignment to
be periodic, with initial cycle FRIF_BASE_CYCLE and period
FRIF_CYCLE_REPETITION, with the latter constrained to be
a power of two ( 64).

With respect to our formulation, when periodicity is enforced,
it may actually be beneficial and used to further restrict the
search space. In the model in which task and signal schedules are

synchronized, AUTOSAR requirements can only be met if the
period of all the sender tasks is a power of 2 multiple of the com-
munication cycle. In this case, the formulation can be extended
to account for the required periodicity of signals by adding a
set of constraints. However, in the following experiments, we do
not enforce such a constraint as the FlexRay system is developed
without AUTOSAR support.

I. Objective Functions

Subject to the satisfaction of deadline constraints, we can seek
optimality with respect to different cost functions. A very impor-
tant objective, related to extensibility, is to minimize the number
of used slots

(42)

If is the set of latency-sensitive paths, we can alternatively
minimize the sum of the end-to-end delays

(43)

where and are the source and sink object of the
path respectively. We can also maximize the minimum laxity
(difference between the deadline of path , and the finish time
of the sink object) among all these paths

(44)

VI. EXPERIMENTAL RESULTS: MINIMIZATION OF USED SLOTS

A. Case Study: An Automotive X-by-Wire System

The application configuration of Tables I and II shows the
data of a prototypical X-by-Wire application from a major au-
tomotive OEM. The application has 10 ECUs interconnected by
a single FlexRay bus. There are a total of 47 tasks, with periods
of 1 and 8 ms, respectively, and 132 signals. Tables I and II show
periods and worst-case execution time of tasks, in microseconds
and the size of each signal, in bits.

The problem is modeled in AMPL and solved using CPLEX
11.0 with a time limit of one hour, on a machine with an Intel
Pentium 3.2 GHz CPU and 1 GB memory.

In this section, we discuss the reduction techniques and ex-
periment results when the objective is to find the schedule with
the minimum number of used slots. Optimization of the number
of used slots is indeed a metric dictated by practical concerns
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TABLE I
TASKS FOR THE X-BY-WIRE EXAMPLE

TABLE II
SIGNAL LIST FOR THE EXAMPLE

and by the supply chain. Having more free slots means the pos-
sibility of accommodating an additional ECU, which is an op-
tion that far outweighs other extensibility metrics. Incidentally,
this is also the metric used in most referenced works. We tried
two FlexRay bus configurations. In both cases, the application
cycle is . For the first configuration (referred to as bus
configuration 1), the communication cycle with

, and the slot size , or 35 . In the
second configuration (bus configuration 2) it is

. The slot size is kept unchanged and there are
slots in the cycle.

If the problem formulation in Section V is applied “as is” to
the case studies, the solver can find a feasible solution, but not
the optimal one within the time limit [Method (1) in Table III].
For example, for the OSEK scheduling with bus configuration 1
(top left of Table III), there are 32672 binary variables after the
AMPL presolve phase. CPLEX finds a feasible solution with 13
assigned slots, but cannot guarantee optimality.

B. Restricting the Search Space

MILP problems generally require a significant amount of
computer time and memory, and often the user needs to provide
additional knowledge on the problem to further restrict the
search space. We discuss several techniques to help solving our
problem. Some of the techniques preserve the optimality of
the solution, while the others over-constrain the problem and
can settle for lower quality solutions. In the latter case, a lower

bound on the cost of the optimal solution can be obtained and
compared with the obtained solution.

1) Bounding the Number of Slots Required by Each ECU:
If the objective is to minimize the number of used slots, it is
possible to leverage the definition of a (tight) lower bound on
the number of slots that are needed by each
ECU . This bound can be obtained by solving a set of child
problems , one for each ECU , in which we only consider
the subset of jobs and signals on and the constraints related
to them, along with all the jobs that receive signals from .
Each such problem is a (much smaller) subset of our original
problem . Its solution
provides a lower bound on the number of slots required by
in the original problem. Therefore, we can add to the original
problem formulation a set of constraints

(45)

which restricts the search space. If a solution with objective
function equal to the lower bound is found, the optimization pro-
cedure can terminate immediately.

In case the problem size is still too large to find the optimal
solution in a reasonable amount of time, we can settle for a sub-
optimal solution. Iteratively, we run the solver for some time and
then take the best solution found. The signal to frame packing is
fixed for the ECUs that reached their lower bound on the number
of used slots, and the optimization procedure is repeated for the
signal to slot assignments for the other ECUs. The iteration stops
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TABLE III
RESULTS ON THE X-BY-WIRE EXAMPLE

when the optimum is found or there is no integer solution found
in the time limit. Algorithm 1 is the corresponding script for im-
plementation in AMPL.

Algorithm 1: Command Script to be implemented in AMPL

1: for each ECU do

2: for

3: end for

4: add constraints to

5: repeat

6: solve problem with time limit

7: for each ECU do

8: if then

9: fix the signal to frame packing for

10: end if

11: end for

12: until optimal solution found or solver stops prematurely
without an integer solution

For our case studies, the solver finds the optimal solutions
within an hour for two of the configurations, even though the
number of binary variables after the AMPL presolve phase re-
mains the same [Method (1)+(2) in Table III].

For the system configuration with OSEK and bus configu-
ration 2, the solver cannot find the optimal solution, but only
a feasible solution using 46 slots. The new problem where the
slot assignment is fixed for the ECUs that reached their lower
bound has 2404 binary variables and can be solved in 1305.2 s.
Similarly, in OSEKTime, when scheduling without preemption
for the second type of bus configuration, the solver cannot find

the optimal solution in an hour. In the second iteration there are
4344 binary variables and the problem can be solved in 9.7 s. In
both cases, the optimal solution is found after the second itera-
tion (44 used slots).

However, optimality cannot be guaranteed when using the
iterative procedure. For example, in the OSEKTime case with
preemption, the solver fails to find a feasible solution within the
time limit of 1 hour.

2) Time Slicing: The size of the problem can also be reduced
by restricting the execution window assigned to each job and
signal (as in [24]). Starting from the system dataflow as in Fig. 3,
we define a directed acyclic graph where nodes represent jobs or
signals exchanged between jobs on different ECUs. Edges link
signals to their sender and receiver jobs. In the resulting graph,
each edge represents a precedence constraint where
needs to finish execution or transmission before the activation
or start of .

We assign a weight to each task and signal representing its
estimated response time. For jobs on OSEKTime systems, is
the worst-case computation time. On OSEK systems, is the
worst-case response time (16), i.e., . For signals, is
the sum of several terms: the length of the dynamic segment, the
symbol and the network idle time windows, the average distance
of two assigned slots from the same ECU, and the copy time
required by the signal at the sender and the receiver nodes. By
such an assignment, if the window can accommodate , there
is a high probability to be able to schedule all tasks and signals.

The start point and end point of the time window
assigned to each task and signal are defined to distribute evenly
the slack time before the deadline on each computation path.
Consider the example of Fig. 6. There are three objects in this
path , with equal to 15, 5, 11, respectively.
The deadline of this path is set to be 40. The starting point
for the time window associated to each object in the path is
computed assuming the phase of the sink object equal to
zero. In this case, the laxity (amount of slack time) of the path
is . If we evenly distribute
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Fig. 6. An example of time slice assignment.

the laxity to the objects in the path, the lower bounds of the time
windows are

(46)

To calculate the finish time of each time window, we as-
sume the phase of the source object is zero. Thus, the path
laxity is and, starting
from the sink object, we calculate as follows:

(47)

This method preserves the precedence constraints and evenly
distributes the slack time to the tasks and signals in the path
(it maximizes the minimum laxity of the time windows). The
schedule obtained with this method is possibly not optimal be-
cause of the additional constraints, but is likely to be an exten-
sible one, given the distribution of the slack time along each
computation path.

Shown as Method (1)+(2)+(3) in Table III, by adding time
slices to tasks and signals on top of step (2) we can further im-
prove the solver efficiency, reducing the number of binary vari-
ables and its run time. For example, in the case study with OSEK
and bus configuration 1, the number of binary variables is re-
duced by 20.8%, and the run time is shortened by 15.2%. More
importantly, for the six case studies the optimal solution after
this step remains the same, which demonstrates that imposing
time windows to tasks and signals allows to reduce the search
space without necessarily yielding on the quality of the solution.

3) Bounding Signal Start Times and Task Phases: Given
the definition of the weights and of the execution windows

as in the previous section, the start time and finish
time for each signal satisfy the following constraints:

(48)

For a task

(49)

Also, if task is an OSEKTime task

(50)

or if it is an OSEK task

(51)

Conditions (48)–(51) and (28)–(32) can be used to find the
bounds for task phases and signal start times ( and are
functions of the phases of the tasks at both ends of the path).
Algorithm 2 gives the details of calculating the bounds for
tasks and signals. First, the bounds of task phases and signal
start times are initialized. Then, according to the constraints in
(48)–(51) and (28)–(32), the lower bound is propagated from
the sources to the sinks in the precedence graph (line 8–18), and
the upper bound is propagated in the reverse order (line 19–29).

Algorithm 2: Find Bounds for Task Phases and Signal Start
Times

1: for each task do

2: ,

3: end for

4: for each signal do

5: ,

6: end for

7: of precedence graph

8: for in from first element to last do

9: for each outgoing edge do

10: if and are tasks then

11:

12: else if is a task and is a signal then

13:

14: else if is a signal and is a task then

15:

16: end if

17: end for

18: end for

19: for in from last element to first do

20: for each incoming edge do

21: if and are tasks then

22:

23: else if is a task and is a signal then

24:

25: else if is a signal and is a task then

26:

27: end if

28: end for

29: end for
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Once the bounds of signal start times are found, we can add
these bounds as constraints to the problem, as follows:

(52)

(53)

More importantly, we can predefine many signal to slot mapping
variables as in (54) and (55). This is helpful for the solver
to trim the solution space without losing optimality

(54)

(55)

This additional improvement, together with the other
methods, allows to shorten the running time of the solver
[Method (1)+(2)+(3)+(4) in Table III] by further reducing
the number of binary variables. With these methods, all six
configurations in the table can be solved in less than one hour.
The optimal solution is found in all cases and it is the same for
all of them.

C. Scalability Analysis

To study the scalability of the proposed formulation for the
slot minimization objective, we generated a set of case studies
by randomly changing the case study in Tables I and II.

The first scalability analysis is performed with respect to the
number of signals in the design, by removing or adding signals
to the case study in Tables I and II. Each new experiment is gen-
erated by adding or removing a set of eight signals to the case
study in the previous section, with size and period distribution
as in the Table II. Overall, we generate configurations with a
number of signals going from 100 to 204. The set of tasks and
ECUs is the same as in the original case study, and we choose
the OSEK scheduling for tasks and the bus configuration 1. The
results are given in Fig. 7. As shown in the top figure, in two of
the cases the number of used slots returned by the MILP solver
is one slot larger than the lower bound provided by (45). On the
other hand, the runtime of the solver is dependent on the time
limit and the number of iterations in Algorithm 1. In our experi-
ments, we set a time limit for each iteration as 3600 s. For cases
with a number of signals 156, the solver can find the optimal
solution within the time limit, achieving the lower bound in (45)
in the first iteration. For the cases with 196 or 204 signals, the
solver returns a result significantly larger than the lower bound
during the first iteration, and three more iterations are needed
to finish the optimization process. In these two cases, the best
solution found at the end of the optimization uses one more slot
than the lower bound. Therefore, it is possible that the solver
computes a suboptimal solution. To improve the situation, the
time limit at each iteration could be increased in the hope that
the solver finds a better quality solution in the early iterations at
the price of longer running times.

We also study the impact of periods on the complexity of the
problem. To do so, the task and signal periods are randomly se-
lected from two sets of harmonic periods: {1, 2, 4, 8, 16, 32} ms,
and {2.5, 5, 10, 20, 40} ms. Correspondingly, the hyperperiod of
the system may take values from the set {8, 16, 20, 32, 40} ms.
The set of tasks, signals and ECUs is the same as in the original

Fig. 7. Number of used slots and runtime of MILP solver versus number of
signals.

Fig. 8. Runtime of MILP solver versus hyperperiod.

case study, and OSEK is still the scheduling policy of choice
for tasks. Also, configuration 1 (with

) is selected for the FlexRay bus. In these experiments, the
solver always achieves the lower bound in (45) at the end of the
iterative processes. The runtime of the solver is plotted in Fig. 8,
where the axis is the hyperperiod of the system. From the
figure, the runtime-complexity that is, the runtime of the solver,
increases with the length of the hyperperiod, but in a moderate
way. For example, the runtime is about 3434 s (less than one
hour) when the hyperperiod increases to 40 ms.

The scalability analysis presented here only covers a small
portion of the possible extensions. There are so many dimen-
sions to the problem that it is not possible to define experi-
mentally the region of applicability. The number of ECUs, the
number of tasks and their periods and computation times, the
number of signals and the topology of the functional commu-
nication and, of course, the size of signals, all come into play.



14 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Exploring exhaustively all these dimensions or even a signifi-
cant subset is unpractical, especially considering that for prob-
lems of industrial size, optimization times of several hours are
expected.

Our limited analysis on two of the possible application di-
mensions (number of signals, task periods) provides useful in-
formation and hints to what can happen when our methodology
is applied to (much) larger case studies. In Fig. 7, the runtime
increases exponentially with the number of signals. A straight-
forward application of the proposed MILP technique to systems
with thousands of signals could be not feasible or provide only
a feasible solution, but not the optimum. In this case, it is still
possible to use our approach incrementally, by dividing the ap-
plication into task and message subsets, possibly using (time and
functional) criticality as a classifier. In this case, the application
subsets could be manageable and the problem could be solved it-
eratively starting from the most critical components and moving
to less critical ones after the previous layers have been allocated
to the task and message scheduling tables. This would require
solving several consecutive MILP problems for each applica-
tion subset or criticality class. Of course, this method cannot
guarantee optimality and (in the worst case) not even finding a
feasible solution if the problem admits one. However, such an
incremental approach should provide a good tradeoff between
runtime and optimality.

VII. EXPERIMENTAL RESULTS: MAXIMIZING

THE MINIMUM LAXITY

Some of the reduction techniques presented in Section VI-B
are specific to the selected cost function (minimizing the number
of used slots), and are not applicable to other objectives. In this
section, we discuss a different optimization metric, related to
performance and robustness with respect to timing constraints:
maximizing the minimum laxity (difference between end-to-end
deadlines and latencies) among a set of paths selected by the de-
signer, as in (44). In the following, we present a set of reduction
techniques to make the optimization process capable of solving
industrial-size problems in a reasonable amount of time.

A. Restricting the Search Space

1) Identification of Critical Paths: We first determine an
upper bound on the maximum laxity of each of the selected
paths. The laxity of a path cannot be larger than the difference
between the deadline and the amount of time spent for computa-
tion and communication by the tasks and signals on the path. We
use the term for each task and signal representing the min-
imum guaranteed delay from its arrival to its finish. For jobs
on OSEKTime systems, is the worst-case execution time.
On OSEK systems, is the worst-case response time, i.e.,

. For signals, is the length of a static slot, plus the
copy time required by the signal at the sender and the receiver
nodes.

The maximum laxity or slack for a path can be calculated
as

(56)

Fig. 9. Number of critical signals and runtime of MILP solver versus number
of signals.

Among all selected paths, the ones with lower slack are likely
to be also the ones with lower laxity, although it is not neces-
sarily true that the path with minimum slack is the one with
minimum laxity in the optimal solution. Thus, we define a set of
critical paths, for which the slack is within a certain range (e.g.,
the average distance of two assigned slots from the same ECU)
of the minimum slack.

At this point, we consider a relaxed version of the original
problem , containing only the signals belonging to the critical
paths identified in the previous step. The problem is usually
much simpler than . If the solver finds a solution for , the
corresponding optimal value is a (tight) upper bound on the
optimal solution of the original problem .

2) Prepacking of Signals: If two signals have the same pe-
riod, sender, and receiver tasks in the selected paths, then the
minimum laxity remains the same if we exchange the slot as-
signment of the two signals (assuming the slot size is large
enough to allow so). We define such two signals as bound to each
other. We propose a preprocessing stage to bound the prepack-
able signals together. To allow enough freedom of signal to slot
assignment in , a restriction can be enforced on the size of the
bounded signals, e.g., smaller than one third of the static slot
size.

The optimization process is the following. First, the problem
is solved and the optimal solution is recorded. Then,

a problem is generated with the following additional con-
straints to :

• the slot assignment of signals in the critical paths is fixed
according to the solution of ;

• the signals which are not in the critical paths are bound
together;

• the objective function is no greater than .
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TABLE IV
LIST OF PARAMETERS

is solved with an optimal solution . The solution to
(when computed by the solver) provides a lower bound on
the actual optimal solution of the original problem . If

, then the optimal solution is found; otherwise, the original
problem is solved with additional constraints that the objec-
tive function is within the range of .

B. Scalability Analysis

We applied the proposed optimization process to the same
set of system configurations used for the scalability analysis
in Section VI-C. We used OSEK scheduling for tasks and the
bus configuration 1, and assumed that all paths in the system
with deadlines are sensitive to latency and are considered in the
metric function. For the original system in Tables I and II, there
are a total of 357 paths, while the number of paths is 877 for
the system with 196 signals. On the top diagram of Fig. 9, the
number of signals in the critical paths is plotted. Despite the
large number of paths, this number is much smaller than the
total number of signals.

For all the case studies in the scalability analysis, the two
bounds and returned by solving the problems and
are the same, thus the optimization process stops after the so-

TABLE V
LIST OF VARIABLES

lution of and the optimal objective function is . The
runtimes for solving the simpler problems and are shown
in the bottom diagram of Fig. 9. The optimal solution to problem

is typically found in a very short time (always within an
hour), but it can take a very long time (more than one day in the
case with 196 signals) to prove its optimality. Also, the problem

can be solved very efficiently. This is because the assignment
of the slots to critical signals is fixed, and the packing of the
other signals is simplified by leveraging the observation that the
objective function is not sensitive to their scheduling.

VIII. CONCLUSION

This paper presents an optimization framework based on an
MILP formulation to schedule transactions consisting of tasks
and signals on a FlexRay-based system. The objective of the
proposed MILP method is to maximize the number of free
communication slots (therefore improving extensibility) or to
maximize minimum laxity among paths (therefore improving
timing performance). We provide solutions for the synchro-
nized task-to-signal information passing under different task
scheduling policies based on existing industry standards. The
optimal solutions can be found within reasonable time for our
industrial-size case studies, which demonstrate the efficiency
of our problem formulation on real systems and the effective
interaction with the MILP solver.

APPENDIX

LIST OF SYMBOLS, PARAMETERS, AND VARIABLES

The list of parameters and variables in the MILP formulation
are summarized in Tables IV and V respectively. The symbols,
with their implications and, if appropriate, domains are listed in
the tables. The possible domains of parameters and variables
include: booleans (denoted as ), non-negative real numbers
(denoted as ), and naturals (denoted as ).
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