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Introduction

Gamma-glutamyltransferase (GGT) is a cell-membrane 
enzyme that catalyses the hydrolysis of extracellular  
glutathione (Whitfield, 2001). Although virtually all cell 
types display GGT activity, and high activity is attained 
in several tissues, including kidney, bile ducts, choroid 
plexus, and testis, serum GGT is thought to derive exclu-
sively from liver and is used as a biomarker of liver dys-
function and excessive alcohol use (Whitfield, 2001).

Serum GGT values have been positively associated 
with the risk of cardiovascular events (Emdin et  al., 
2001; Lee et  al., 2006; Meisinger et  al., 2006; Ruttmann 
et  al., 2005), of hypertension (Lee et  al., 2003, 2005), 
type II diabetes (Lee et  al., 2004, 2005; Lim et  al., 2007; 
Lippi, Targher, Guidi, 2007; Targher et  al., 2007), and 
metabolic syndrome (Lee et al., 2007), independently of 
liver disease and alcohol consumption; unfortunately, 
the currently used laboratory GGT assays do not allow 

to discriminate among the different causes of GGT 
increase, thus reducing the clinical value and specificity 
of this otherwise sensitive disease biomarker.

We devised a high sensitivity method that identifies, 
in all healthy subjects, four GGT fractions with different  
molecular weight (MW), that we named b-GGT, m-GGT, 
s-GGT, and f-GGT, with MW corresponding to 2000, 
1000, 250, and 70 kDa, respectively (Franzini et  al., 
2008a). Although the f-GGT is the most abundant frac-
tion in healthy adults (Franzini et al., 2008b), we found 
that s-GGT shows a prominent increase in liver disease 
(Franzini et  al., 2010a), whereas b-GGT, and to a lesser 
extent m-GGT and s-GGT values are associated with  
the occurrence of cardiovascular risk factors in healthy 
subjects (Franzini et al., 2010b).

No other information is available as concerns the 
biological meaning and the physiological determinants 
of plasma GGT fractions, or if they exist in laboratory 
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mammalians used to study human diseases. Since in all 
mammalians liver is known to be structurally and func-
tionally immature at birth, and reaches full functional 
maturation with age, to start answering these questions, 
we decided to investigate whether high-molecular weight 
GGT fractions change during postnatal maturation of the 
liver in humans and laboratory mammalians, that are 
known for presenting at birth with a substantially mature 
(Van Eyken et  al., 1988a) and a highly immature (Van 
Eyken, Sciot, Desmet, 1988b) liver, respectively.

Animals and methods

Chemicals and stock solutions
γ-Glutamyl-7-amido-4-methylcoumarin (gGluAMC, 
G7261), Glycylglycine (GlyGly, G1002) and all chemicals 
were purchased from Sigma-Aldrich. gGluAMC stock 
solution was prepared 4.5 mmol/L in ethanol 30% w/w 
containing 0.01 N NaOH and stored at −20°C. This solu-
tion was diluted daily 25-fold into 0.25 M Tris-HCl buffer 
pH 8.5 (25°C).

Maternal and fetal blood samples
Maternal and cord plasma-EDTA samples at delivery 
were obtained from the blood and umbilical cord blood 
bank of the University Hospital of Pisa; samples obtained 
after centrifugation within 4 h from delivery were stored 
at −20°C and used within one month. All mothers (mean 
age 30.5 ± 6 years) gave their informed consent for the 
study.

Animals
Animals were housed at the animal facility of the IFC-
CNR; all mice, rats, and rabbits were housed in conven-
tional cages (Tecniplast spa) under controlled 12/12 h 
light/dark cycle and given food and water ad libitum. 
Mini pigs were housed in authorized stall, under con-
trolled 12/12 h light/dark cycle and given weighed food 
while water ad libitum. Sheep were housed in authorized 
stall under natural light/dark cycle and given food and 
water ad libitum

Plasma fractional GGT was studied in mice and rats 
all over postnatal development obtaining blood from 
fetuses (20th day of gestation) and newborn animals 
at 1, 7, 14, 21, and 30 days after delivery. Rodents were 
sacrificed administering an overdose of the anesthetic 
Zoletil (Virbac, srl; tiletamine and zolazepam 40 mg kg−1) 
by intraperitoneal puncture and blood was obtained 
by heart puncturing. Due to the small amount, blood 
samples obtained from individual fetuses and 1-day-old 
rats and mice were pooled; a pooled blood sample was 
obtained also from 7 days old mice.

In the other animals, fractional GGT was studied in 
adults. All animals were sedated with Zoletil and blood 
was obtained from auricular (mini pigs) or saphenous 
(rabbits) or jugular (sheep) vein.

This investigation was in accordance with the Italian 
law (DL-116, Jan. 27, 1992), which is conformed to the 

Guide for the Care and Use of Laboratory Animals pub-
lished by the U.S. National Institutes of Health (NIH 
Publication No. 85-23, revised 1996).

GGT plasma fraction determination
Analysis of total and fractional GGT was performed using 
plasma-EDTA samples (0.02 mL for human samples, 
0.1 mL for animal samples) as described previously 
(Franzini et  al., 2008a, 2008b) using an FPLC (fast pro-
tein liquid chromatography) system (AKTA purifier, GE 
Healthcare Europe, Milan, Italy) equipped with a gel-fil-
tration column (Superose 6 HR 10/300 GL, GE Healthcare 
Europe) and fluorescence detector (Jasco FP-2020, Jasco 
Europe, Lecco, Italy). Separation of fractional GGT was 
obtained by gel-filtration chromatography and the enzy-
matic activity was quantified by postcolumn injection of 
the fluorescent substrate for GGT, gGluAMC. Enzymatic 
reaction, in the presence of gGluAMC 0.030 mmol/L 
and glycylglycine 4.5 mmol/L, proceeded for 4.5 min in 
a reaction coil (PFA, 2.6 mL) kept at the 37°C in a water 
bath. The fluorescence detector operating at excita-
tion/emission wavelengths of 380/440 nm detected the 
AMC signal; the intensity of the fluorescence signal was 
expressed in arbitrary fluorescence units (f.u.). Under 
this reaction conditions, area under curve is proportional 
to GGT activity. Total area, between 10 and 25 mL elution 
volume, and fractional GGT area was calculated by a 
MatLab program (Version 7 MathWorks, Inc.) to resolve 
overlapping peaks; the curve fitting was conducted with 
a nonlinear least-squares minimization algorithm using 
four exponentially modified Gaussian (EMG) curves. The 
reaction was calibrated analyzing plasma samples with 
known total GGT activity (standards); the slope of the 
calibration curve was used to convert total and fractional 
GGT area in activity values expressed as U/L. The sum of 
fractional GGT activity represents on average the 99% of 
total GGT activity.

Statistics
Total and fractional GGT activity levels among healthy 
women, puerperae, and cord blood samples were 
compared by 1-way ANOVA, followed by Bonferroni’s 
Multiple Comparison Test. Total, b-, m-, s-GGT, as well 
as the b-GGT/s-GGT ratio were ln-transformed to reduce 
the distribution skewness.

Results

GGT in the plasma of mothers and corresponding 
placental cord blood
Mothers showed total serum GGT activity level similar to 
healthy adult women, while cord blood samples showed 
higher GGT activity in comparison with both healthy 
adults and mothers (p < 0.001 in both comparisons, Table 
1). In plasma samples obtained from mothers and cord 
blood we found the same four fractions (b-, m-, s-, f-GGT) 
described in the population of healthy adult women. At 
difference with controls, in both cases the s-GGT was the 
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most abundant fraction: this peculiar GGT fraction pat-
tern in mothers was because of significantly lower levels 
of f-GGT as compared to healthy women (p < 0.001), while 
in cord blood this was because of significantly higher val-
ues of s-GGT (p < 0.001; Table 1).

GGT fractions in rat and mouse fetus and  
newborn animals
Fractional GGT profile in rat fetus at term was  
characterized by the abundance of b-GGT, which 
was the prominent fraction (Table 2). Fractional GGT  
pattern changed sharply 24 h after delivery, when b-GGT 
activity decreased, and f-GGT, and to a larger extent 
s-GGT increased (Table 2). During the following weeks, 
all GGT fraction activities gradually decreased, but with 
different rate, and at weaning most of the circulating  
GGT was present as f-GGT activity, like in adults (Table 2)

Also in mice, b-GGT was the most abundant fraction 
in fetus at term, and then decreasing sharply to become 
the third most abundant fraction at day 1 after birth. The 

pattern of decrease of individual GGT fraction in mice 
was substantially the same than in rats, to leave f-GGT as 
the only circulating fraction at 30 days of age (Table 2).

GGT fractions adult sheep, rabbit, and mini pig
Adult sheep exhibited the highest GGT activity among all 
species tested, mostly in the form of f-GGT (Table 3). The 
f-GGT was the main GGT fraction also in rabbits and mini 
pigs, but the remaining GGT was mostly represented by 
s-GGT in rabbits, and by b-GGT in mini pigs (Table 3).

Discussion

In this study, we show for the first time that GGT fractions 
corresponding to those found in humans (Franzini et al., 
2008b) exist also in laboratory mammalians, that the 
high molecular weight fractions (b-GGT, m-GGT, s-GGT) 
are relatively abundant in earlier stages of development 
in humans and animals, and that the physiological 
decrease of serum GGT activity, that occurs after birth, is 

Table 1.  Total and fractional GGT values (U/L).

 
Healthy women 

(n = 100)
Mothers  

(n = 6)
Cord blood  

(n = 6)
Healthy women 
versus mother

Healthy women  
versus cord blood

Mother versus  
cord blood

Total GGTa 16.1 ± 6.9 11.6 ± 4.8 91.4 ± 48.0 n.s. <0.001 <0.001
b-GGTa 1.6 ± 1.6 2.2 ± 0.9 12.7 ± 10.1 n.s. <0.001 <0.001
m-GGTa 0.6 ± 0.3 0.6 ± 0.2 3.9 ± 2.3 n.s. <0.001 <0.001
s-GGTa 5.0 ± 4.0 5.7 ± 3.4 62.7 ± 35.5 n.s. <0.001 <0.001
f-GGT 9.1 ± 2.4 3.1 ± 0.9 10.6 ± 1.8 <0.001 n.s. <0.001
b/s ratioa 0.3 ± 0.2 0.7 ± 0.6 0.2 ± 0.1 <0.01 n.s. <0.01
Note: Total and fractional GGT data are presented as mean ± SD. n.s.: not significant.
a1-way ANOVA, followed by Bonferroni’s Multiple Comparison Test, performed on ln-transformed data.

Table 2.  Total and fractional GGT activities (U/L) in foetus and newborn animals at different time.

Rat
Fetus 

Pool, n = 6
1 day 

Pool, n = 4
7 days 
n = 4

14 days 
n = 5

21 days 
n = 4

30 days 
n = 5

Total GGT 25.6 62.1 11.5 ± 1.9 7.7 ± 5.0 3.2 ± 0.3 4.6 ± 0.7
b-GGT 19.6 11.1 1.5 ± 0.3 0.7 ± 0.1 0.4 ± 0.1 0.6 ± 0.2
m-GGT n.d. n.d. n.d. n.d. n.d. n.d.
s-GGT 2.0 31.2 6.2 ± 1.5 3.4 ± 3.1 0.7 ± 0.1 0.9 ± 0.2
f-GGT 4.0 18.1 5.8 ± 0.8 3.5 ± 1.7 1.9 ± 0.3 3.0 ± 0.4
Mice Pool, n = 10 Pool, n = 12 Pool, n = 5 n = 4 n = 3 n = 3
Total GGT 6.5 2.5 1.7 1.1 ± 1.0 0.4 ± 0.2 0.3 ± 0.04
b-GGT 3.8 0.5 0.3 0.3 ± 0.3 n.d. n.d.
m-GGT 0.2 n.d. n.d. n.d. n.d. n.d.
s-GGT 1.0 1.0 0.7 0.3 ± 0.1 0.2 ± 0.1 n.d.
f-GGT 1.5 1.0 0.7 0.6 ± 0.4 0.3 ± 0.1 0.3 ± 0.1
Note: Data are presented as mean ± SD. n.d.: not detectable.

Table 3.  Total and fractional GGT activity (U/L) in adult mammalians.
 Sheep (n = 4) Mini pig (n = 4) Rabbit (n = 4) Rat (n = 5) Mouse (n = 3)
Total GGT 63.7 ± 4.2 29.4 ± 3.7 9.2 ± 1.1 4.6 ± 0.7 0.3 ± 0.04
b-GGT 0.9 ± 0.5 3.4 ± 0.9 0.1 ± 0.02 0.6 ± 0.2 n.d.
m-GGT n.d 0.6 ± 0.5 0.02 ± 0.01 n.d. n.d.
s-GGT 4.0 ± 0.7 1.7 ± 0.8 1.6 ± 0.3 0.9 ± 0.2 n.d.
f-GGT 59.6 ± 4.5 24.1 ± 3.5 8.2 ± 0.9 3.0 ± 0.4 0.3 ± 0.1
Note: Data are presented as mean ± SD.
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due mostly to the progressive decrease of these fractions, 
while f-GGT remains as the most abundant circulating 
GGT fraction in adults of all species.

Both in rodents and humans, the GGT activity in fetal 
liver and blood is significantly higher than in newborns, 
and it decreases progressively with postnatal maturation 
(Mohan, Ling, Watkins, 1994). These high activities are 
caused by increased transcriptional regulation of GGT 
genes in fetal liver (el Yaaghoubi et al., 1995), which decrease 
after birth. Anyway, it is unlikely that the change in GGT 
fraction pattern is because of changes in gene expression, 
as only one peptide with enzyme activity is encoded by the 
GGT genes (Selvaraj & Balasubramanian, 1985), whereas 
the several fractions found in plasma correspond to the 
association of the same GGT peptide with different carriers 
(Nemesánszky & Lott, 1985). The present findings suggest 
that during liver maturation, in parallel with a decrease of 
GGT expression, a change occurs in the processes leading 
to the formation of GGT fractions. Thus the modification 
of GGT fraction pattern in postnatal liver maturation likely 
reflects the functional and structural maturation of the liver 
rather than changes in gene expression.

In mammalians, the liver is known for reaching a full 
structural and functional maturation only after birth, but 
with differences among species: in humans, the develop-
ment of the intrahepatic bile ducts starts at the 9th week 
of gestation, when ductal cells appear around large por-
tal veins; tubular structures are formed, and gradually get 
incorporated in the connective tissue surrounding the 
portal vein, resulting in the appearance of individualized 
bile ducts (Van Eyken et al., 1988a). In rodents, because 
of the far shorter gestation (3 weeks instead of 40 weeks), 
even at 10 days of age, the bile duct system is still imma-
ture, and around the smaller portal vein branches, rings 
of cells are still undergoing transformation into bile duct–
type cells (Van Eyken, Sciot, Desmet, 1988b).

In view of this, the findings that (i) rat fetus displays 
mostly b–GGT, whereas human fetus shows a more com-
plex pattern, including fractions with lesser molecular 
weight, (ii) postnatal growth is accompanied by a pro-
gressive decrease of GGT fractions with higher molecular 
weight, and (iii) f-GGT is the dominant GGT fraction in 
adults of all species, suggest that the appearance of GGT 
fractions with smaller molecular weight reflects the pro-
gressive maturation of the liver and in particular of the 
biliary system; thus the alteration of the GGT fraction 
pattern found in human disease (Franzini et al., 2010a) 
is likely to be a specific consequence of the structural 
derangement and dysfunction of the liver rather than a 
simple marker of cell damage. This hypothesis is in line 
with findings in epithelial cell lines deriving from non-
hepatic tumors overexpressing GGT, that were found 
to release a high molecular weight GGT fraction corre-
sponding to b-GGT but not the other GGT fractions in 
the culture medium (Franzini et al., 2009a), thus showing 
that only functionally mature and structurally organized 
hepatocytes allow the formation of other GGT fractions 
and in particular of f-GGT.

The structural maturation of liver does not seem to 
be the only determinant of the GGT fraction pattern: 
interestingly, although mothers showed the same serum 
GGT values that healthy women, GGT fraction analysis 
revealed a significantly lower f-GGT value, and a signifi-
cantly higher ratio between b-GGT and s-GGT, showing 
that even in the absence of changes in serum GGT activity,  
the GGT fraction pattern may reflect the response of 
liver to physiological and hormonal stimuli such as those 
associated to pregnancy. This may apply also to the dif-
ferences in GGT fraction pattern among species, which 
despite showing f-GGT as the main fraction, showed 
largely different absolute values of individual GGT frac-
tions and different relative distribution of their values.

Besides providing a more sensitive and informative 
diagnostic and prognostic marker than total GGT, GGT 
fractions might also allow a better understanding the 
pathogenesis of the diseases associated with its increase: 
GGT is known for participating to multiple processes in 
physiology and in pathology, including the generation 
of reactive oxygen species and free radicals and the 
oxidation of LDL lipoprotein (Paolicchi et  al., 1999); 
the different biological properties of the different GGT 
fractions might influence their ability of contributing to 
the pathogenesis of human diseases. In particular, the 
properties of the “fetal” GGT fraction, b-GGT, appear 
critical for understanding the connection between liver 
damage, serum GGT increase, and the prognostic value 
of serum GGT as concerns metabolic and cardiovas-
cular disease (Emdin et  al., 2001; Lee et  al., 2007). In 
fact, only the b-GGT was found to accumulate in ath-
erosclerotic plaques, where it was found to colocalize 
with oxidized LDL lipoproteins and CD68+ foam cells, 
contributing to the oxidative and inflammatory events 
leading to plaque progression and rupture (Emdin, 
Pompella, Paolicchi et  al., 2005; Franzini et  al., 2009b; 
Paolicchi et al., 2004).

In conclusion, in humans and laboratory mamma-
lians, GGT fractions pattern reflects liver function and 
structural maturation; studying the derangement of the 
liver fraction pattern associated with liver diseases might 
allow a better understanding of their pathogenesis as 
well as an additional and more specific diagnostic tool. 
The present study provides a basis for further studies 
concerning the causes and mechanisms of the GGT frac-
tion pattern derangement in disease and for setting up 
experimental animal models aimed to investigate the 
biogenesis and function of GGT fractions.
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