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On the Error Probability Evaluation in Lightwave
Systems With Optical Amplification

Enrico Forestieri, Member, IEEE, and Marco Secondini

Abstract—We review the time domain, frequency domain, and
Fourier series Karhunen–Loéve series expansion (KLSE) methods
for exact BER evaluation in intensity- and phase-modulated di-
rect-detection optically amplified systems. We compare their com-
plexity and computational efficiency, and discuss the most rele-
vant implementation issues. We show that the method based on
a Fourier series expansion has the simplest implementation and
requires the minimum number of eigenvalues to converge to the
exact BER value for various kind of optical filters. For this method,
we also introduce an equivalent form of the moment generating
function, that avoids the singularity for eigenvalues equal to zero,
and derive an alternative expansion where signal and noise are ex-
panded on the same orthonormal basis.

Index Terms—Amplifier noise, direct detection, error proba-
bility evaluation, Karhunen-Loéve expansion.

I. INTRODUCTION

S INCE the advent of optical amplifiers in lightwave com-
munications, the evaluation of the bit error ratio (BER)1

in optically preamplified direct-detection systems has received
much attention [1]–[17]. Due to the presence of amplified spon-
taneous emission (ASE) noise and of a square law detector, the
distribution of the detected signal is non-Gaussian. Although
the use of a Gaussian approximation has been shown to give
fairly accurate results in OOK systems with optimum detection
threshold [6], [17], the problem in general has to be modeled
by using exact detection statistics rather than Gaussian approx-
imations ( factor approach). In particular, the exact BER can
be evaluated from the moment generating function (MGF) of
the output sample, which is obtained through a Karhunen-Loéve
series expansion (KLSE) of the noise. To this aim, different ap-
proaches have been reported in the literature and are commonly
deployed. Though, to our knowledge a comparison among all
those methods, taking into accounts the implementation issues
and their computational efficiency, has not been done. More-
over, several works are still being published in which the authors
resort to approximated approaches for BER evaluation, showing
that the subject of exact BER evaluation has not yet been entirely
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1As commonly done, we use the term BER instead of the more correct bit
error probability (BEP).

assimilated by the scientific community, and that some concerns
on complexity and computational cost still exist.

In this paper, we review and compare the most known
methods for exact BER evaluation, showing the differences
in terms of implementation and efficiency. Among the many
methods devised to this aim (see, for example, [8], [13]–[16],
[18], and [19], to cite a few of them), we consider only those
reported in [18] (time domain expansion), [8] (frequency do-
main expansion), and [15] (Fourier series expansion), as all
others either are based upon them, or are their extensions, or
are limited to particular combinations of optical and electrical
filters. We show that the Fourier expansion method [15] is the
most efficient in almost any practical case in terms of the min-
imum number of eigenvalues that are needed to obtain the exact
BER value. For this method, we give an equivalent form of the
MGF, that avoids the singularity which arises in the expression
reported in [15] when one or more eigenvalues are equal to
zero, and propose a simple formula to automatically determine
the number of eigenvalues required for the convergence. We
also derive an alternative expansion, where signal and noise
are expanded on the same orthonormal basis, and discuss its
advantages and disadvantages compared to the expansion on
different bases that is adopted in [15].

The paper is organized as follows. Section II introduces the
general formulation of the KLSE method, relating the exact
BER evaluation to the evaluation of the MGF of the output
sample. Sections III, IV, and V describe the time domain,
frequency domain, and Fourier series expansions, respec-
tively. Section VI compares the computational cost of the
three methods for different optical filters. Finally, Section VII
investigates the extension to DPSK systems.

II. THE KLSE METHOD

The BER at the output of the decision gate can be evaluated
by determining the probability density function (pdf) associated
with each detected bit of a pseudorandom bit sequence of length

, augmented by a 0 in the longest run of 0’s such as to
obtain a de Bruijn sequence of length [20].
This sequence is such that all -bit patterns occur exactly once
in a single period and thus it is possible to accurately account
for the intersymbol interference (ISI) due to bits. In the
following, we describe the method for binary OOK detection,
and only briefly outline the extension to DPSK as accounting for
phase-modulated formats is quite straightforward, as explained
in [21] and [22].

Due to the ISI and the nonstationarity of the signal-ASE beat
noise term, the pdf of the sample is different for each
sampling time being the inverse of the bit
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rate , and a proper time offset. The average BER can be
written as

(1)

where is the error event associated with the th bit , whose
probability, given the decision threshold , can be evaluated
through the pdf of the sample as

(2)

The minimum average BER is obtained by jointly minimizing
(2) over and . However, most often the time offset can
be estimated more cheaply by choosing it such that the sampling
times occur at the maximum eye opening. It can be shown that
the probabilities that appear in (2) may be approximated with
very high accuracy by the so-called saddlepoint approximation
[23]

(3)

where denotes the second-order derivative of the phase
function defined as

(4)

being the MGF of . The values
and are the positive and negative, respectively, saddle points
on the real axis of , and may be evaluated as the
roots of the equation . So, to evaluate the BER 2, one
simply needs to know the MGF of the sample at the output of
the decision gate. This MGF can be analytically evaluated only
for a few combinations of optical and electrical filters, such as
Lorentzian shaped optical filter and integrate-and-dump elec-
trical filter [14], [24]. Hence, all the works dealing with exact
BER evaluation should really be regarded as methods for eval-
uating the MGF of the output sample.

In the following, we denote by

(5)

the input field before the optical filter at the receiver end,
being the signal and the ASE noise in the same polar-

ization of the signal [modeled as additive white Gaussian noise
(AWGN)]. Fourier transformed pairs will be denoted by lower
and upper case letters, such that, as an example, the impulse
response of the optical filter is . The MGF of the
random variable is defined as

(6)

where denotes the statistical expectation operator.

2Note that the saddlepoint approximation could be used to compute the pdfs
� ���, and then the BER could be obtained by their numerical integration.
However, it is more effective to directly evaluate the BER.

III. EXPANSION IN THE TIME DOMAIN

We start describing the first method (to our knowledge) re-
ported in the literature, which is based on a KLSE in the time
domain [18]. In so doing, we extend this method to the case
in which the electrical filter impulse response may also
assume negative values, as in the literature it is described for
nonnegative impulse responses only [11], [16], [18], [19]. De-
noting by the receiver input field after the
optical filter , where and

, the electrical signal after the postdetection
filter can be written as

(7)

where the last equation should be interpreted in the sense that
both sides are statistically equivalent, due to the stationarity of
the filtered ASE . Expanding both signal and noise onto the
functions orthonormal with respect to the weight
function , i.e., such that3

(8)

yields

(9)

where
(10)

(11)

Inserting (9) in (7) and taking into account the orthonormality
condition (8), we obtain

(12)

As is Gaussian and zero mean, the coefficients are com-
plex Gaussian random variables and zero mean, too. Requiring
that they are statistically uncorrelated (and, thus, independent,
being they Gaussian), (11) implies that should be such
that

(13)

where we accounted for the fact that is real and

(14)

3The orthonormality condition should be regarded here in a broader sense, as
if � ��� is not always positive, we will see that for some � � � the integral (8)
may be equal to ��.
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is the autocorrelation function of normalized to the ASE
spectral density per polarization mode . Taking into account
(8), it is apparent that (13) is satisfied if

(15)

Notice that, when (15) holds, for , (13) becomes

(16)

so it is clear that it should be , and (9) is a
Karhunen-Loéve expansion, as the coefficients in (11) are
statistically uncorrelated and circularly symmetric complex
random variables with zero mean and variance equal to .
Thus, in (12) is a sum/difference of noncentral chi-square
independent random variables and its MGF is given by the
product of the individual MGFs

(17)

where . Had we accounted for the ASE in the orthogonal
polarization, we would have obtained for the signal

(18)

where the s are distributed as the s and independent of
them, such that the MGF would have been as in (17) but now
with . Had we considered the signal and noise compo-
nents onto two general orthogonal polarizations, we would have
obtained for

(19)

where and are relative to polarization , such that
the MGF would have been

(20)

Notice that, in the absence of PMD, the fiber Jones matrix is fre-
quency independent and hence ,
whatever the two reference orthogonal polarizations. So, only in
the absence of PMD, (17) and (20) would be equal.

A. Evaluating and

Performing the integration in (15) over a limited time interval
, chosen such that outside it the impulse response

of the electrical filter is negligible

(21)

and following the Nyström method [25], [26], we can apply a
Gauss-Legendre quadrature rule [27] with appropriate weights

and nodes

(22)

to evaluate (21) as

(23)

Now, letting assume the same values as the nodes , we
obtain the following equations:

(24)

These equations can be written in matrix notation as

(25)

where , and are matrices whose elements are,
respectively

(26)

As evident from (25), the columns of are the eigenvectors of
the matrix , and the diagonal elements of are its eigen-
values. The elements of the th column of the matrix are
the samples of the eigenfunction at the times

. Notice that the matrix is real but not symmetric,
and is not positive definite if is negative or zero for
some . However, as the correlation matrix is always sym-
metric and positive definite, we can factorize it by a Cholesky
decomposition as 4

(27)

such that multiplying (25) on the left by it can be written as

(28)

where is symmetric and . So, instead
of (25), we could solve (28) and then evaluate as .
Either methods should be taken into account, as one of them
can succeed where the other fails. Indeed, finding eigenvalues
and eigenvectors of a real nonsymmetric matrix may be numer-
ically problematic, whereas a symmetric matrix gives no prob-
lems. But, to obtain the symmetric matrix in (28), one needs
the Cholesky decomposition (27) which, because of roundoff er-
rors, in some cases might not be evaluated. We observed that the

4The Cholesky decomposition is straightforward to obtain, but the procedure
may fail due to roundoff errors which may make the matrix nonpositive definite,
even if theoretically it is so.
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two methods never fail both at the same time, so a good strategy
is trying to solve (25) and, if it fails, switching to (28). Note that
a numerical failure with both methods could also be circum-
vented by slightly perturbing some parameter, but we find the
mentioned procedure more effective.

Anyway, when solving either the eigenvalue problem (25) or
(28) using standard packages, the returned eigenvectors are nor-
malized to unit norm, such that the elements of the th column
of matrix are not equal but instead proportional to the sam-
ples of the eigenfunction at the times .
The proportionality constant for the th eigenfunction can be
easily found by equating to the integral (8), for

, performed using the same quadrature rule and using
the elements of column of as the samples .

Once are known for , one could use
(10) to directly evaluate through the Gaussian quadrature
rule. This would require 1 FFT to evaluate (the required
values should be obtained through interpolation, as
the nodes of the quadrature rule are not equispaced), and
integrals to obtain for all the sampling times and the

eigenfunctions. Alternatively, a more efficient method is to
evaluate and through interpolation for , such
that

(29)

can be obtained through FFT, and then as

(30)

In this way, only a total of FFTs are needed ( is the
Fourier transform of the signal at the output of the optical
amplifier).

IV. EXPANSION IN THE FREQUENCY DOMAIN

This method was proposed in [8] and is based on a KLSE in
the frequency domain. The electrical signal after the post-
detection filter can be written as

(31)

where

(32)

As known, the eigenfunctions of the Fredholm in-
tegral equation

(33)

form a complete set of orthonormal basis functions, and the cor-
responding eigenvalues are real and ordered as

. Due to the completeness of , we can use
the following expansion:

(34)

where the expansion coefficients are
given by

(35)

Inserting (34) in (31) and taking into account (33), we obtain

(36)

As is AWGN, the coefficients are statistically in-
dependent and circularly symmetric complex random variables
with zero mean and variance equal to the ASE spectral density
per polarization mode . Thus, in (36) is a weighted sum
of noncentral chi-square independent random variables and its
MGF is given by the product of the individual MGFs

(37)

where . Had we accounted for the ASE in the orthog-
onal polarization, we would have obtained for the signal
the expression

(38)

where are distributed as and independent of them,
such that the MGF would have been as in (37) but now with

. Had we considered the signal and noise components onto two
general orthogonal polarizations, we would have obtained for

the expression

(39)

where and are relative to polarization , such that
the MGF would have been

(40)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on August 9, 2009 at 16:38 from IEEE Xplore.  Restrictions apply. 



710 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 6, MARCH 15, 2009

In the absence of PMD, , what-
ever the two reference orthogonal polarizations, and (37) and
(40) would be equal.

A. Evaluating and

Performing the integration in (33) over a limited frequency
interval , chosen such that outside it the optical filter
frequency response is negligible [and, anyway, not larger
than the bandwidth of , as suggested by (35)]

(41)

following again the Nyström method [25], [26], we can apply a
Gauss-Legendre quadrature rule [27] with appropriate weights

and nodes , to evaluate (41) as

(42)

and letting assume the same values as the nodes , we have
the following equations:

(43)

These equations can be written in matrix notation as

(44)

where , and are matrices whose elements are,
respectively

(45)

As evident from (44), the columns of are the eigenvec-
tors of the matrix , whereas the diagonal elements of

are its eigenvalues. The elements of the th column of
the matrix are the samples of the eigenfunction at
the frequencies . Notice that the matrix

is not Hermitian, but, as the weights are always
positive, premultiplying (44) by the real diagonal matrix

, it becomes

(46)

where now is Hermitian and
. So, instead of (44), it is better to solve (46)

and then evaluate as , where
. Notice that this time

the eigenvectors need not be normalized.

Once the samples are known for ,
, for , can be evaluated through interpolation, and

then can be obtained (through FFT) as

(47)

where is the Fourier transform of the signal at the
input of the optical amplifier.

V. FOURIER SERIES EXPANSION

We now briefly review the method proposed in [15]. When the
signal term in (5) corresponds to a periodic binary sequence
with period equal to is also periodic with period equal
to , so it can be expanded in Fourier series as

(48)

The noise is not periodic, but if the receiver has a finite
memory, say , then the signal at time is only deter-
mined by the values of in the time interval ,
i.e., an exact description of the noise in this time interval
is a sufficient statistic. So we may write a Karhunen-Loéve ex-
pansion for in the interval only, and,
as is AWGN, we can choose any orthonormal basis for the
expansion, for example, the Fourier basis

(49)

So, the relevant noise process becomes
, where are statistically independent and

circularly symmetric complex random variables with zero mean
and variance equal to the ASE spectral density per polarization
mode . For convenience, we rewrite as5

(50)

where are as but with variance equal to . The se-
ries (48) can be limited to the number of harmonics carrying at
least 99.9% of the signal energy after the optical filter, whereas,
as the dimensionality of the space of periodic signals with band-
width and period is about , we limit the series (50)
to terms , where ,

5In (50), using ���������� � � � � ��� � instead of simply
����������� � is expedient to have the phase term automatically disap-
pearing at the sampling time � . Equivalently, we could throw away any phase
term as � in (50) are statistically equivalent to � ������ � for any �
(any phase rotation does not alter the statistics of a Gaussian process).
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and is such that the optical filter frequency response is neg-
ligible outside the interval . Thus, the Fourier trans-
forms of and are taken approximately equal to

(51)

(52)

Substituting in (31), after some simple
algebra we obtain for

(53)

or, in compact matrix notation

(54)

where means transpose and conjugate, is a column vector
whose components are

(55)

is an Hermitian matrix whose elements are

(56)

is a column vector whose components are

(57)

and, finally, is the signal sample at time in the absence of
noise6

(58)

Notice that is a complex Gaussian random vector with zero
mean and diagonal covariance matrix

(59)

where

(60)

and is the identity matrix.
The matrix can be diagonalized by the unitary matrix

formed by its normalized eigenvectors arranged in the same
order of their corresponding eigenvalues

(61)

where

(62)

Letting

(63)

(64)

and substituting (61) in (54), we have

(65)

where and , are the components of vector .
As

(66)

the s are still independent and identically distributed Gaussian
complex random variables, thus in (65) is a weighted sum
of noncentral chi-square independent random variables plus two
constant terms. Thus, its MGF may be written as

(67)

6Note that both (57) and (58) are more efficiently evaluated through FFT.
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Fig. 1. Convergence of the evaluated BER with the number of eigenvalues: Gaussian and second-order Butterworth optical filters.

where and . When taking into account the
ASE noise in the orthogonal polarization, the additional term

, where the s are independent random variables
distributed as the s, should be added to the sample in (65), such
that the MGF turns out to be as in (67), but with . When
considering two general orthogonal polarizations, the MGF is

(68)

where is relative to polarization . Again, in the absence

of PMD, , such that (67) and (68) would
be equal.

Note that the MGF in (67) is slightly different from that one
reported in [15], where the contribution of the constant terms
was separated. Although theoretically equivalent, the straight
use of (67) avoids the singularity which arises in the expression
reported in [15] when one or more eigenvalues are equal to zero.

A. Evaluating and

Differently to the previous methods, the quantities necessary
to evaluate the MGF are very straightforward to obtain for the
Fourier method, as it does not require Gauss-Legendre quadra-
ture and interpolation. The matrix depends only upon the op-
tical and electrical filters and its elements are as in (56). Once
evaluated eigenvalues and eigenvectors of , the ’s are the
components of the vector in (64) which is readily evaluated,
as the components of vector can be obtained through
FFT from (57), requiring only the knowledge of the Fourier co-
efficients of the noise-free signal at the input of the optical filter
(obtainable through FFT, too). The parameter depends only
upon the optical and electrical filters and may be chosen as

(69)

where and are the noise-equivalent bandwidths of
the (lowpass equivalent) optical and electrical filters, respec-
tively. Given a pair of filters, one chooses the smallest value of

which guarantees the convergence of the evaluated BER. For
almost all practical filters a value of is sufficient when the
parameter is chosen as above, i.e., , with

equal to the bandwidth in which about 99% of the lowpass
equivalent optical filter impulse response energy is contained.

B. Alternative Expansion

In the Fourier expansion method described in this section,
signal and noise are expanded on different orthonormal bases,
such that the number of eigenvalues required is the minimum
for the convergence of the noise term alone, and not of both
signal and noise. Indeed, a (perhaps) more elegant formulation
could be given to this method by expanding signal and noise on
the same orthonormal basis, but sacrificing efficiency, as we will
now see.

Expanding in Fourier series both signal and noise on a time
interval centered on , (53) becomes

(70)

where, however, the s are different from the ones in (48) as
they are now the Fourier coefficients of the expansion of
on the interval

(71)

The sample in (70) can now be written in matrix notation
as

(72)
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Fig. 2. Convergence of the evaluated BER with the number of eigenvalues: fourth– and sixth–order Butterworth optical filters.

Fig. 3. Convergence of the evaluated BER value with the number of eigenvalues: Single and cascaded Fabry-Perot optical filters.

where and are still the column vector and the matrix whose
elements are as in (55) and (56), respectively, whereas is a
column vector whose components are

(73)

Letting now

(74)

and using (61) and (63), the sample in (72) may be written
as

(75)

which is formally equal to (36), so the MGF of is

(76)

where, again, when neglecting the ASE noise in the
orthogonal polarization, or when accounting for it.

Notice that this alternative method may be less efficient be-
cause extra FFTs (one for each bit in the transmitted se-

quence) should be performed for evaluating . Moreover, a
larger is required, as the convergence of both signal and
noise should be guaranteed. This was not the case with the pre-
vious method, as the signal was always evaluated with sufficient
accuracy and only the convergence of the noise term was re-
quired. However, we only need to know the coefficients of the
Fourier series expansion of the signal term at the input of the
optical filter to be able to evaluate the MGF, as the elements of

in (57) need not be evaluated.
Another alternative expansion could be also derived by ex-

panding both signal and noise on a time interval , exactly
as done in [28]. In this case, the convergence of the signal term
and the extra FFTs would not be required, but the size of the
eigenvalue problem, that is proportional to the time-width of the
expansion interval, would be fixed to a much larger value.

An alternative derivation of the Fourier series method using
nonlinear Volterra theory is presented in [29], developing in de-
tail the computational complexity of the method.

VI. COMPARING THE VARIOUS METHODS

The computational cost of the methods described so far is
determined by the length of the de Bruijn sequence

, and by the size of the eigenvalue problem. When
considering the same values of and , all the methods have
approximately the same cost. However, while the ISI length is
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Fig. 4. Convergence of the evaluated BER value with the number of eigenvalues: Ideal rectangular and third-order Gaussian optical filters.

Fig. 5. Comparison between the Fourier methods using either the same basis or two different bases for the expansion of signal and noise: Gaussian and second-
order Butterworth optical filters.

Fig. 6. Double-basis Fourier method: BER versus parameter � for various optical filters with 3-dB bandwidth equal to ���� .

the same for all the methods, the value of —corresponding
either to the number of nodes of the quadrature rule for the time
and frequency expansion, or to the number of coefficients for the
Fourier expansion—required to achieve the convergence of the
evaluated BER to its exact value may depend on which method
is adopted. In the following, we compare the results obtainable
using the methods illustrated in the previous sections in terms
of the minimum number of eigenvalues needed to obtain the
exact value of the BER.

We take into account an OOK system with NRZ pulses in a
back-to-back configuration. The electrical filter in the receiver
is a fifth-order Bessel with 3-dB bandwidth equal to ,
whereas the optical filter has a 3-dB bandwidth equal to
and is selected among various representative different types.
The results obtained with a -bit de Bruijn sequence for a
fixed optical signal-to-noise ratio (OSNR) are summarized in
Figs. 1 through 4. Similar results have been obtained when con-
sidering different electrical filters.
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Fig. 7. Double-basis Fourier method: BER versus parameter � for various optical filters with 3-dB bandwidth equal to ���� .

As can be seen, the number of eigenvalues required by the
Fourier method is quite independent of the optical filter shape,
as about 11 of them suffice in all cases taken into account. This
is about the same number of eigenvalues required by the time
domain method, except for the singly resonant type high-fi-
nesse Fabry-Perot optical filter, whereas the frequency domain
method requires a doubled number of eigenvalues with respect
to the other two methods, except when the optical filter has a
very sharp rolloff, as shown in Fig. 4 for an ideal rectangular and
a third-order Gaussian filters. The reason because the frequency
domain method requires a higher number of eigenvalues is to be
attributed to the fact that the eigenfunctions [whose bandwidth
is of the same order as that of the optical filter, as can be inferred
from (33)] should be known over a frequency range equal to the
minimum between the signal bandwidth and the optical filter
bandwidth, as can be seen from (47), where the optical filter
bandwidth appears implicitly through the eigenfunctions. So,
the smoother the optical filter rolloff, the larger the frequency
range and so the larger the number of eigenfunction samples
(i.e., of eigenvalues) to be known.

In order to avoid clutter, we have not reported the results about
the alternative method described in Section V-B in Figs. 1–4, but
it turns out that the minimum number of eigenvalues is practi-
cally the same as that required by the frequency domain method,
as shown in Fig. 5 (to be compared with Fig. 1) for Gaussian
and second-order Butterworth optical filters, confirming that the
single-basis expansion, although more compact and elegant, is
less efficient. As anticipated, this is due to the fact that the con-
vergence of both signal and noise has to be guaranteed instead
of that of the noise alone.

In general, when changing the bandwidth of the filters, a dif-
ferent number of eigenvalues is required. In the Fourier method,
this number is automatically determined once the parameter in
(69), depending on the optical and electrical filters shapes (but
not on their bandwidths), is determined. This could be done,
once and for all, for a given pair of filters, otherwise one simply
choose , a value which is safe with almost all practical
filters, as shown in Figs. 6 and 7, relative to optical filters with
3-dB bandwidths of and , respectively.

As can be seen, filters whose impulse response is always pos-
itive (on the left in Figs. 6 and 7) monotonically converge to the
exact BER as increases. On the contrary, when the impulse
response changes sign (on the right–hand side of Figs. 6 and
7), i.e., when it oscillates, the convergence is oscillatory, too.
Filters with oscillatory impulse responses with duration longer

Fig. 8. Double-basis Fourier method: With an ideal filter, convergence is ac-
celerated by using an appropriate sequence of values for �.

than times the inverse of the filter bandwidth, may require
larger values of parameter to converge to the exact BER, un-
less, to accelerate the convergence, appropriate values are used.
For example, this is the case with an ideal rectangular filter,
which deserves a discussion.

The impulse response of an ideal filter of bandwidth is pro-
portional to , so it is very oscilla-
tory in nature and decays very slowly, as its amplitude is always
less than times its maximum value only for ,
meaning that a value of about would be required to con-
verge to the exact BER. However, taking into account that the
output signal is given by the convolution of the input signal with
the filter impulse response, if we choose a sequence of values for

in (69) such that falls in the middle of a lobe of the impulse
response, i.e., , then only the
net area subtended by the impulse response between its local
minima and maxima would play a role, and we would obtain a
fast convergence to the exact BER, which is the value around
which the BER obtained by continuously varying oscillates.
This is illustrated in Fig. 8, where the discrete values used for
are , such
that .

VII. DIFFERENTIAL PHASE-SHIFT KEYING (DPSK)

Differential direct detection is commonly employed in phase-
modulated optical systems, like DPSK and DQPSK. The de-
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Fig. 9. Convergence of the evaluated BER with the number of eigenvalues: DPSK system, Gaussian, and second-order Butterworth optical filters.

Fig. 10. Double-basis Fourier method: BER versus parameter � for a DPSK system and various optical filters with 3-dB bandwidth equal to ���� .

tector consists of a Mach-Zehnder interferometer (MZI), with
delay and phase difference between its output ports, and
a couple of balanced photodetectors. The values of and
depend on the modulation format, as well as on detector imper-
fections. In this case, it is easy to show [21], [22] that the signal

at the output of the detector is still given by (31), but now
with

(77)

where

(78)

(79)

represent the (equivalent lowpass) transfer functions from the
input of the optical filter to the sum (constructive) and difference
(destructive) output ports of the MZI, respectively. Therefore,
the BER can be evaluated by the same frequency or Fourier ex-
pansion methods illustrated in the previous sections, simply re-
placing (32) with (77). By contrast, the extension of the time do-
main expansion method to differential detection is not straight-
forward and will not be discussed in this paper.

In regard to the DPSK systems, the comparison of the various
methods in terms of minimum number of eigenvalues required
for the convergence to the exact BER value yields similar re-

sults to those presented in Section VI for OOK systems. As an
example, Fig. 9 (to be compared with Figs. 1 and 5) shows the
convergence of the frequency, double- and single-basis Fourier
methods for the Gaussian and second-order Butterworth optical
filters. The double-basis Fourier expansion is the most efficient,
while the number of eigenvalues required by the frequency ex-
pansion method is even higher than in OOK, probably due to
the fact that the evaluation of the integral (41) with the oscil-
lating kernel function (77) requires a higher number of nodes

for the Gauss-Legendre quadrature rule. In regard to the
convergence of the Fourier expansion for different filter shapes
and bandwidths, this can be controlled as in OOK by choosing
an appropriate value of the parameter for the receiver memory
that, including the delay introduced by the MZI, can be ex-
pressed as

(80)

Fig. 10 shows the convergence of the double-basis Fourier ex-
pansion method to the exact BER value as increases, for the
same cases considered in Fig. 6. Again, depending on the filter
shapes (but not on their bandwidths), an appropriate value for

can be determined once and for all for a given pair of filters.
Otherwise, is a safe choice for all practical filters. Indeed,
we note that the behavior for the OOK and DPSK is very sim-
ilar, and that the same values of can be used in both cases.
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VIII. CONCLUSION

We have reviewed the most known KLSE methods for exact
BER evaluation in optically amplified direct-detection sys-
tems. Among the many methods devised to this aim, we have
compared those based on a time domain, frequency domain,
or Fourier series expansion. We have shown that the Fourier
series expansion has the simplest implementation and requires
the smallest number of eigenvalues to converge to the exact
BER for various optical filters. We have further improved the
Fourier series expansion by introducing an equivalent form
of the MGF that avoids the singularity that arises when one
or more eigenvalues are equal to zero, and we have proposed
a simple formula to automatically determine the number of
eigenvalues required for convergence. Finally, we have derived
an alternative Fourier series expansion, where signal and noise
are expanded on the same orthonormal basis, and discussed the
implications of adopting the same basis or two different bases.
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