
Providing Performance Guarantees to Virtual Machines

using Real-Time Scheduling⋆

Tommaso Cucinotta, Dhaval Giani, Dario Faggioli, and Fabio Checconi

Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. In this paper we tackle the problem of providing Quality of Service

guarantees to virtualized applications, focusing on computing and networking

guarantees. We propose a mechanism for providing temporal isolation based on

a CPU real time scheduling strategy. This allows not only to have control over

the individual virtual machine throughput, but also on the activation latency and

response-time by which virtualized software components react to external events.

We show experimental results gathered on a real system validating the approach.

1 Introduction

When deploying virtualized distributed applications over a set of physical resources, by

means of machine and network virtualization, one of the hot problems that is receiving

an increasing attention [16, 14] is the one of how to provide a stable performance of

individual virtualized applications. This problem is due to a multitude of factors: on the

networking side, multiple data flows need to be streamed over a pool of shared physical

network links; on the computing side, multiple Virtual Machines (VMs) need to be

concurrently scheduled over a set of shared processors and cores; for storage, multiple

data flows need to be concurrently supported during access to shared storage devices.

Sharing of physical resources constitutes a great opportunity for IaaS and PaaS

providers. It allows for a better utilization of the underlying physical infrastructure.

This is especially true with the increasing need [2] to deploy complex, distributed, in-

teractive real-time applications over virtualized infrastructures (as common in the Cloud

Computing world), a scenario implying a potential under-utilization of resources. An

efficient utilization of resources in datacenters may also lead to the deployment of in-

teractive applications on the same physical hosts occupied by HPC applications, which

typically are CPU intensive and may rely on communication channels to pass data and

synchronize themselves. In this case, it is crucial to provide CPU and I/O isolation

between the two classes of workloads to avoid decreasing the customer satisfaction.

However, without an appropriate support for temporal isolation, concurrently run-

ning VMs may interfere each other in a way that it becomes impossible to guarantee

a stable performance level to each one of them. This problem has been previously ad-

dressed in the case of compute-intensiveVMs [6, 7], however it still remains a hot topic

in the case of I/O-intensive and mixed workloads.

⋆ The research leading to these results has received funding from the European Community’s

Seventh Framework Programme FP7 under grant agreements n. 214777 “IRMOS—Interactive

Realtime Multimedia Applications on Service Oriented Infrastructures” and n. 248465

“S(o)OS – Service-oriented Operating Systems.”

2 Related Work

The interaction between CPU scheduling and I/O performance of virtualized environ-

ments was studied before, mainly in virtualization systems based on the Xen hypervi-

sor [1]. The papers cited below all consider the Xen setup with device drivers in dedi-

cated domains [10]. In [5], the authors proposed a monitoring infrastructure for Xen and

estimated the CPU overhead induced by I/O virtualization using a set of HTTP-based

benchmarks. In [3], the authors characterized the overheads of network virtualization in

Xen using full system simulation; in this way, they were able to estimate the effects of

the hardware architecture on the virtualization stack performance. To increase the con-

trol over I/O virtualization, various solutions were proposed; most of them used CPU

scheduling to isolate the VMs from the performance perspective. In [11], the authors

proposed to augment the Xen hypervisor with a set of mechanisms to account for and to

control the CPU time spent on behalf of VMs doing I/O. In [17], the authors proposed an

extension to the Xen credit-based scheduler improving its behavior in presence of mul-

tiple different applications with heavy I/O workloads, prioritizing the I/O bound ones.

Also, in [13], the authors proposed to modify the Xen CPU scheduler and networking

architecture to improve the performance of virtualized I/O on 10 Gbps Ethernet.

None of the approaches described above deal with service guarantees, most of them

aim at improving fairness and/or throughput; we advocate the need for providing ex-

plicit guarantees in order to obtain predictable performance.

The existing solutions that support QoS, like for example Open vSwitch [18], or

VMWare vNetwork 1, tend to be confined to the networking domain, and enforce QoS

policing and shaping network traffic according to user-defined policies. A widely used

virtual networking tool, VDE [9] uses the Linux bridging capabilities to achieve similar

results. Our work differs from these latter approaches in that it tries to take into account

isolation and CPU scheduling effects on I/O performance.

Finally, in our previous works [7, 8] we proposed to use CPU real-time schedul-

ing for supporting proper timeliness guarantees to virtualized applications concurrently

running on different VMs deployed on the same CPU. However, in these works the in-

vestigation was limited to CPU-bound workloads, while in this paper we consider also

the effect of I/O-intensive workloads.

3 Proposed Approach

In this paper, we propose to provide stable computing and networking performance

guarantees to VMs concurrently running on the same CPU(s) using an EDF-based soft

real-time scheduling strategy for the CPU, which we developed in the context of the

IRMOS project2. The proposed approach is particularly useful when mixing VMs with

workloads that are heterogeneous with respect to the time granularity over which the

temporal requirements of the hosted applications need to be fulfilled.

The IRMOS real-time scheduler [4] allows to reserve a “slice” of the processing

capability of a system to a group of threads and/or processes (shortly, tasks). This is

1
http://www.vmware.com/products/vnetwork-distributed-switch

2 More information is available at: http://www.irmosproject.eu.

done by specifying two scheduling parameters for each group: a budgetQ and a period

P , with the meaning that the tasks in the group are entitled to run on each of the CPUs

(processor, or cores when present) available to the OS, forQ time units every period of

P time units. This constitutes a scheduling guarantee and a limitation at the same time.

Also, when a group is entitled to run on each CPU, the IRMOS scheduler employs a

POSIX priority-based real-time scheduling strategy [12]. See [4] for further details.

With KVM, there is little control on how multiple VMs compete in accessing the

available CPUs. In fact, the default Linux scheduling strategy (SCHED OTHER) imple-

ments the Completely Fair Scheduler (CFS) policy, which tries to be as fair as possible

across competing processes. Therefore, we used the scheduler described above to iso-

late the temporal behavior of concurrently running VMs, and at the same time provide

them with their specifically required scheduling guarantees.

When dealing with compute-intensive VMs only, most of the time dedicated to

a VM is spent by the host by running the corresponding KVM process. Therefore,

providing proper CPU scheduling guarantees to the process, as achievable with our

real-time IRMOS scheduler, allows for the achievement of a sufficient isolation degree

between that VM and other VMs. The scheduling parameters for a VM can be set-up

as follows. The scheduling period controls the activation latency of the VM and can be

set equal to the minimum expected interarrival period of external requests triggering

the VM services. The ratio budget over period controls howmuch computing capability

of the host is reserved for the VM, thus the budget may be tuned by performing a

preliminary benchmarking phase. Thanks to the hard reservation nature of our real-

time scheduler, the performance obtained when the VM is running in isolation on the

host, with given scheduling parameters, is only marginally affected by the workload

imposed on the host by other VMs.

However, the situation becomes more complex when dealing with I/O-intensive

workloads. In fact, in such case, the host may spend a significant part of the CPU time

related to a VM outside the context of the KVM threads. The lowest level of the net-

working code executes in interrupt context, preempting the execution of VMs poten-

tially unrelated to the I/O traffic that is being handled, thus “stealing” part of the budget

reserved to the interrupted VMs, even under the use of our real-time scheduler. To deal

with this problem, we suggest to overprovision the assigned budget, as compared to the

minimum one detected when benchmarking the VM in isolation. Specifically, not only

the budget should be increased of the amount necessary to deal with the interferences

of multiple VMs at the cache level (this is unavoidable in modern systems), but also

of a quantity that is strictly dependent on the overall networking traffic performed by

the VMs hosted on the same system. Such aggregate figure is usually available to the

infrastructure that handles the deployment of the VMs on the physical host.

Also, higher-level in-kernel networking code often executes in softirq context [15].

Furthermore, when using the PREEMPT-RT kernel [19], part of the low-level network-

ing driver code runs in dedicated kernel threads, where it may be at risk of not getting a

proper chance to run, compromising networking performance. In such case, we suggest

to put all the threads relative to the same VM into the same reservation, comprising

both KVM threads and kernel threads necessary for dealing with its (para-)virtualized

networking. Our real-time scheduler allows for the provisioning of overall scheduling

guarantees to the entire group of threads, even if not belonging to the same process.

Fig. 1a depicts the overall architecture, showing how the temporal capsule extends also

to the interrupt threads, which act as interconnecting channels between the kernel and

the virtual machines. In the preliminary results reported below, we show how it is possi-

ble to achieve a proper degree of isolation in presence of I/O-intensive VMs, deferring

to future work the adoption of more sophisticated techniques (see Section 5).

4 Experimental Results

For validating the proposed approach, in this section we report results gathered from an

experimental set-up involving a real Linux system running KVM as hypervisor.

All the described experiments have been conducted by using two physical systems

equipped with an Intel Quad Core Q6600 CPU running at 2.4 Ghz, 4 GB of RAM,

and a Gigabit Ethernet card. One of the two systems played the role of server, and was

running a Fedora 11 Linux distribution with a modified version of the kernel including

our real-time scheduler. VMs were started with KVM in bridge mode and with 1 GB

of guest memory. The networking was setup to use the virtio interface. The other

system was used as client. On multi-core systems, the problem addressed in this paper

appears when deploying VMs with an overall number of virtualized CPUs greater than

the number of available physical CPUs. In order to keep a simple experimental set-up,

the tests were run with only one core brought online, thus all the VMs running on it.

In what follows, resource-level experiments are shown first, demonstrating how the

proposed technique improves isolation of I/O intensive traffic across concurrently run-

ning VMs, gathered running a synthetic network-benchmarking tool. Then, application-

level results are shown, from an experiment involving a real Apache web server.

 100

 200

 300

 400

 500

 600

 700

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
(M

b
/s

)

CPU budget (ms every 100 ms)

Network Bandwidth

a) Architecture. b) Network bandwidth with varying CPU reservation for a single VM.

Fig. 1: System architecture and network bandwidth for a VM with various CPU reservations.

Resource-level isolation. In the following experiment, we investigate on the impact of

different CPU share allocations over the networking throughput achievable by the VM.

To this purpose, a VM was run alone on the server, with all of its threads attached to a

unique real-time reservation for the VM, with a period of 100ms and different budgets

varying from 10ms to 90ms. We used iperf 3 to measure the network throughput

between an iperf client running on the client machine, and an iperf server running

inside the VM. The test was repeated 100 times for each budget value. As shown in

Fig. 1b, there is a nearly linear relationship between the network throughput achieved

by the VM and its CPU share. Each point corresponds to the average throughput over

the 100 repetitions, and is flanked by a small vertical segment showing the standard

deviation, which is barely noticeable except for a budget of 75ms.

 50

 100

 150

 200

 250

 300

 350

 400

 10 15 20 25 30 35 40 45

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
(M

b
/s

)

CPU budget (ms every 100 ms)

10%
20%
30%
40%

Fig. 2: Network throughput (Y axis) for a VM as a function of its own CPU share (X axis), at

varying CPU shares for the other VM (different curves).

 100

 150

 200

 250

 300

 350

 400

 10 15 20 25 30 35 40

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
(M

b
/s

)

CPU budget (ms every 100 ms)

10% Network
20% Network
30% Network
40% Network

10% Compute
20% Compute
30% Compute
40% Compute

Fig. 3: Network throughput (Y axis) for a VM as a function of the CPU share of the other VM (X

axis), at varying CPU shares for itself (different curves), in case of CPU- and I/O-intensive loads.

Now, in order to measure the degree of temporal isolation enforced by the real-time

scheduler, we started two VMs on the same physical host and core, each one isolated in

a different resource reservation. Each VM was running an iperf server. We launched

two iperf clients on the client machine against the two VMs, and we measured the

achieved throughput at varying scheduling parameters for both VMs.

The obtained results are shown in Fig. 2 and 3, from different perspectives. Fig. 2

shows (on the Y axis) the throughput obtained by a VM as a function of its own reser-

vation share (on the X axis), at varying reservation share for the other VM (different

3 More information at: http://sourceforge.net/projects/iperf/.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
r{

C
o
m

p
le

ti
o
n
T

im
e
}

<
 t

t (ms)

w/o RSV, no load
w/o RSV, load

w/ RSV, no load
w/ RSV, load

Fig. 4: CDF of the completion time of the requests to the first VM in various conditions

curves). Ideally, if the temporal isolation were perfect, we should see perfectly super-

imposed curves. However, as expected, a performance drop is experienced by the VM

under observation, quantified in a 20%–30% drop when the reservation share of the

other VM is increased from 10% (similarly to the single-VM case in Fig. 1b) to 40%.

Fig. 3 shows the throughput (Y axis) obtained by the VM under observation as a

function of the CPU share assigned to the other VM (X axis), and at varying CPU

shares for itself (different curves labeled with “Network”). Again, if the isolation were

perfect, we should see horizontal lines. Instead, we see again the performance drop that

is achieved. Finally, we made a third experiment with a computation-intensiveworkload

on the other VM (it was running Octave4 inverting a 1000x1000 matrix). The results

are shown on the same graph, in the set of curves labeled as “Compute”. As expected,

the performance drop in this case is smaller, being due exclusively to cache interfer-

ence. The difference between the two sets of curves may be basically attributed to the

increased interrupt activity experienced in the former experiment, which was “stealing”

CPU from the first VM despite the reservation at the scheduling level.

However, we would like to point out that the adoption of our real-time scheduling

strategy is capable of providing a controllable bound on the maximum interference that

a VM may undergo due to intensive networking activities of other VMs. For example,

in order to counteract the expected interferences from other VMs, Fig. 2 may be used in

place of Fig. 1b for “looking-up” the (correctly overprovisioned) budget for sustaining

a given VM throughput, depending on the expected networking load of other VMs.

Application-level results. To demonstrate the achievable level of isolation on a real-

world application, a ramdisk with the Apache web server5 was setup inside each VM6.

The two VMs were started, and the download of a file of 100 kBytes was requested

(via the HTTP protocol) to the first VM every 20ms using the ab tool7, from the client

machine. Also, 1000 concurrent requests of a file of the same size were being continu-

ously sent to the second VM, serving as both networking and computation “load”.

4 More information is available at: http://www.octave.org.
5 More information is available at: http://httpd.apache.org.
6 By setting it up in a ramdisk, additional interference in the form of disk I/O was avoided.
7 We modified ApacheBench (ab) to behave as described.

The experiment was performed with and without the load imposed by the second

VM, and we measured the completion time of the requests, i.e., the time at which the

download of the file finished, for 500 consecutive requests. Moreover, both the unloaded

and loaded experiments were repeated while the two VMs were co-scheduled by the

standard Linux kernel mechanisms, and with the first VM in a reservation with parame-

ters RSV (Q,P) = (4ms, 20ms). The Cumulative Distribution Function (CDF) of the

completion time in all the four evaluated scenarios is shown in Fig. 4. The vertical line

at 20 ms represents the time by which a request must complete, since another one should

start (i.e., the deadline). It is easy to see how, in the unloaded case (curves labeled with

“no load”), both with and without the reservation (curves labeled with “w/RSV” and

“w/o RSV”, respectively), the performance is good enough, since the completion time

is almost constant at about 2.1ms among the various requests and it is always far from

the deadline (with peaks of nearly 6.2ms). However, in the loaded case, the original

VM performance is completely subverted, and more than 30% of the requests for the

first VM cannot complete within the 20ms deadline/period, with peaks of download-

time of nearly 27ms. When encapsulating the VM in a real-time reservation, instead,

the download times returned to be well below the deadline, with a maximum of 7.1ms.

5 Future Work and Conclusions

In this paper, the problem of provisioning QoS guarantees to VMs concurrently running

on the same CPU was tackled. The focus was on VMs with I/O intensive workloads,

where even if the guest OSes are for most of the time suspended for performing I/O,

actually the host needs to execute the para-virtualized and native networking drivers

necessary to deliver the packets, what is a major cause of interference between the

VMs. Therefore, I/O-intensive and compute-intensive VMs may strongly interfere with

each other, leading to a performance that is completely subverted as compared to the

case in which they were running or benchmarked in isolation.

We showed that, by recurring to soft real-time scheduling strategies at the virtual-

ization layer, it is possible to provide a good level of isolation between the concurrently

running VMs. Furthermore, it is possible to achieve both a good throughput of the VMs

and to keep the individual guarantees at the latency level, something that is not possible

with the standard Linux scheduling strategies. However, the proposed solution is all but

conclusive in this regard. In fact, as highlighted in the experimental section, still there is

a degree of interference which is due to the resources that are implicitly shared among

the VMs inside the host OS, namely network interface drivers and bridging logic that

runs on the host OS. We plan to enhance the isolation with this regard by slightly re-

working the networking driver infrastructure in Linux for such purpose, exploit some

recent kernel features that allows for putting the networking code in a per-VM thread-

/context. Also, we plan to experiment with the PREEMPT-RT branch of the kernel, in

which part of the drivers logic is moved to dedicated kernel threads, thus it is possible

to control when they execute with our real-time scheduler, and for which a variation of

our real-time scheduler is already being ported.

Finally, we plan to investigate on the use of adaptation for fine-tuning the resource

reservation parameters so as to better suit the needs of virtualized applications.

Bibliography

[1] Barham, P., et al.: Xen and the art of virtualization. In: SOSP ’03: Proc. nineteenth ACM

Symposium on Operating Systems Principles. New York, NY, USA (2003)

[2] Boniface, M., et al.: PaaS architecture for real-time quality of service management in

clouds. International Conference on Internet and Web Applications and Services (2010)

[3] Chadha, V., et al.: I/O processing in a virtualized platform: a simulation-driven approach.

In: VEE ’07: Proc. 3rd international conference on Virtual execution environments. pp.

116–125. ACM, New York, NY, USA (2007)

[4] Checconi, F., et al.: Hierarchical multiprocessor CPU reservations for the linux kernel. In:

Proc. OSPERT 2009. Dublin, Ireland (June 2009)

[5] Cherkasova, L., Gardner, R.: Measuring cpu overhead for I/O processing in the Xen virtual

machine monitor. In: ATEC ’05: Proc. annual conference on USENIX Annual Technical

Conference. pp. 24–24. Berkeley, CA, USA (2005)

[6] Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in Xen.

SIGMETRICS Perform. Eval. Rev. 35(2), 42–51 (2007)

[7] Cucinotta, T., Anastasi, G., Abeni, L.: Real-time virtual machines. In: Proceedings of the

29
th IEEE Real-Time System Symposium (RTSS 2008) – WiP Session. Barcelona (De-

cember 2008)

[8] Cucinotta, T., Anastasi, G., Abeni, L.: Respecting temporal constraints in virtualised ser-

vices. In: Proc. IEEE RTSOAA 2009. Seattle, Washington (July 2009)

[9] Davoli, R.: VDE: Virtual Distributed Ethernet. In: Proc. First International Conference on

Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmuni-

ties (TRIDENTCOM’05). pp. 213–220 (2005)

[10] Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A., Warfield, A., Williamson, M.,

Williamson, M.: Reconstructing I/O (2004)

[11] Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance isolation across

virtual machines in Xen. In: Proc. ACM/IFIP/USENIX 2006 International Conference on

Middleware. New York, NY, USA (2006)

[12] IEEE: Information Technology - Portable Operating System Interface - Part 1: System Ap-

plication Program Interface Amendment: Additional Realtime Extensions. (2004)

[13] Liao, G., et al.: Software techniques to improve virtualized i/o performance on multi-core

systems. In: Proc. ACM/IEEE ANCS 2008. New York, NY, USA (2008)

[14] Lin, B., Sundararaj, A., Dinda, P.: Time-sharing parallel applications with performance iso-

lation and control. In: Proc. 4th International Conference on Autonomic Computing (ICAC

2007). pp. 28–28. Jacksonville, FL (June 2007)

[15] Love, R.: Linux Kernel Development (2nd Edition) (Novell Press). Novell Press (2005)

[16] Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance interference

effects for qos-aware clouds. In: EuroSys ’10: Proc. 5th European conference on Computer

systems. pp. 237–250. ACM, New York, NY, USA (2010)

[17] Ongaro, D., Cox, A.L., Rixner, S.: Scheduling i/o in virtual machine monitors. In: Proc.

ACM SIGPLAN/SIGOPS VEE ’08. ACM, New York, NY, USA (2008)

[18] Pfaff, e.a.: Extending networking into the virtualization layer. In: 8th ACM Workshop on

Hot Topics in Networks (HotNets-VIII). New York City, NY (October 2009)

[19] Rostedt, S., Hart, D.V.: Internals of the rt patch. In: Proc. Ottawa Linux Symposium (OLS

2007). pp. 161–172 (June 2007)

